
Table of Contents
Code Development...1

Debugging...2
Recommended Intel Compiler Debugging Options..2
Common Causes of Segmentation Faults (Segfaults)..4
TotalView...6
GNU Debugger (GDB)..8
Finding Hotspots in Your Code with the Intel VTune Command-Line Interface..................9
Using Gprof for Performance Analysis...12

Performance Analysis...14
Getting a Quick Performance Overview with Intel APS..14
Using Intel Advisor for Better Threading and Vectorization...18
Running a Roofline Analysis with Intel Advisor..21
Using MPIProf for Performance Analysis..24
Using MPInside for Performance Analysis and Diagnosis...25
Using the IOT Toolkit for I/O and MPI Performance Analysis..28
Overview of Intel VTune Analysis...31
Finding Hotspots in Your Code with the Intel VTune Command-Line Interface................36

Process/Thread Pinning..39
Instrumenting Your Fortran Code to Check Process/Thread Placement...........................39
Using HPE MPT Environment Variables for Pinning..41
Using the omplace Tool for Pinning...44
Using Intel OpenMP Thread Affinity for Pinning...48
Process/Thread Pinning Overview..52
Using the dplace Tool for Pinning..55
Using the mbind Tool for Pinning...60

Code Development

Code Development 1

Debugging

Recommended Intel Compiler Debugging Options

Commonly Used Options for Debugging

-O0
Disables optimizations. Default is -O2

-g
Produces symbolic debug information in object file (implies -O0 when another
optimization option is not explicitly set)

-traceback
Tells the compiler to generate extra information in the object file to provide source file
traceback information when a severe error occurs at runtime.
Specifying -traceback will increase the size of the executable program, but has no impact
on runtime execution speeds.

-check all
Checks for all runtime failures.
Fortran only.

-check bounds
Alternate syntax: -CB. Generates code to perform runtime checks on array subscript and
character substring expressions.
Fortran only.
Once the program is debugged, omit this option to reduce executable program size and
slightly improve runtime performance.

-check uninit
Checks for uninitialized scalar variables without the SAVE attribute.
Fortran only.

-check-uninit
Enables runtime checking for uninitialized variables. If a variable is read before it is
written, a runtime error routine will be called. Runtime checking of undefined variables is
only implemented on local, scalar variables. It is not implemented on dynamically
allocated variables, extern variables or static variables. It is not implemented on structs,
classes, unions or arrays.
C/C++ only.

-ftrapuv
Traps uninitialized variables by setting any uninitialized local variables that are allocated
on the stack to a value that is typically interpreted as a very large integer or an invalid
address. References to these variables are then likely to cause run-time errors that can
help you detect coding errors. This option sets -g.

-debug all
Enables debug information and control output of enhanced debug information. To use
this option, you must also specify the -g option.

-gen-interfaces
-warn interfaces

Tells the compiler to generate an interface block for each routine in a source file; the
interface block is then checked with -warn interfaces.

Options for Handling Floating-Point Exceptions

-fpe{0|1|3}

Debugging 2

Allows some control over floating-point exception (divide by zero, overflow, invalid
operation, underflow, denormalized number, positive infinity, negative infinity or a NaN)
handling for the main program at runtime.
Fortran only.
-fpe0: underflow gives 0.0; abort on other IEEE exceptions
-fpe3: produce NaN, signed infinities, and denormal results
Default is -fpe3 with which all floating-point exceptions are disabled and floating-point
underflow is gradual, unless you explicitly specify a compiler option that enables
flush-to-zero. Note that use of the default -fpe3 may slow runtime performance.

-fpe-all={0|1|3}
Allows some control over floating-point exception handling for each routine in a program
at runtime. Also sets -assume ieee_fpe_flags. Default is -fpe-all=3.
Fortran only.

-assume ieee_fpe_flags
Tells the compiler to save floating-point exception and status flags on routine entry and
restore them on routine exit. This option can slow runtime performance.
Fortran only.

-ftz
Flushes denormal results to zero when the application is in the gradual underflow mode.
This option has effect only when compiling the main program. It may improve
performance if the denormal values are not critical to your application's behavior. Every
optimization option O level, except -O0, sets -ftz.

Options for Handling Floating-Point Precision

-mp
Enables improved floating-point consistency during calculations. This option limits
floating-point optimizations and maintains declared precision. -mp1 restricts floating-point
precision to be closer to declared precision. It has some impact on speed, but less than
the impact of -mp.

-fp-model precise
Tells the compiler to strictly adhere to value-safe optimizations when implementing
floating-point calculations. It disables optimizations that can change the result of
floating-point calculations. These semantics ensure the accuracy of floating-point
computations, but they may slow performance.

-fp-model strict
Tells the compiler to strictly adhere to value-safe optimizations when implementing
floating-point calculations and enables floating-point exception semantics. This is the
strictest floating-point model.

-fp-speculation=off
Disables speculation of floating-point operations. Default is -fp-speculation=fast

-pc{64|80}
For Intel EM64 only. Some floating-point algorithms are sensitive to the accuracy of the
significand, or fractional part of the floating-point value. For example, iterative
operations like division and finding the square root can run faster if you lower the
precision with the -pc[n] option. -pc64 sets internal FPU precision to 53-bit significand.
-pc80 is the default and it sets internal FPU precision to 64-bit significand.

Recommended Intel Compiler Debugging Options 3

Common Causes of Segmentation Faults (Segfaults)

A segmentation fault (often called a segfault) can occur if a program you are running attempts
to access an invalid memory location. When a segmentation fault occurs, the program will
terminate abnormally with an error similar to the following message:

SIGSEGV: Segmentation fault - invalid memory reference.
 forrtl: severe (174): SIGSEGV, segmentation fault occurred

The program may generate a core file, which can help with debugging.

If you use an Intel compiler, and you include the -g -traceback options, the runtime system will
usually point out the function and line number in your code where a segmentation fault
occurred. However, the location of the segmentation fault might not be the root problemâ��a
segfault is often a symptom, rather than the cause of a problem.

Common Segfault Scenarios

Common scenarios that can lead to segmentation faults include running out of stack space and
issues resulting from bugs in your code.

Running Out of Stack Space

Stack space is a segment of program memory that is typically used by temporary variables in
the program's subroutines and functions. Attempting to access a variable that resides beyond
the stack space boundary will cause segmentation faults.

The usual remedy is to increase the stack size and re-run your program. For example, to set the
stack size to unlimited, run:

For csh
unlimit stacksize

For bash
ulimit -s unlimited

On the Pleiades front-end nodes (PFEs), the default stack size is set to 300,000 kilobytes (KB).
On the compute nodes, PBS sets the stack size to unlimited. However, if you use ssh to connect
from one compute node to another (or several others) in order to run programs, then the stack
size on the other node(s) is set to 300,000 KB.

Note: Setting the stack size to unlimited on the PFEs might cause problems with Tecplot. For
more information, see Tecplot.

Bugs in Your Fortran Code

In Fortran programs, the most common bugs that cause segmentation faults are array bounds
violationsâ��attempts to write past the declared bounds of an array. Occasionally, uninitialized
data can also cause segmentation faults.

Array Bounds Violations

Common Causes of Segmentation Faults (Segfaults) 4

To find array bounds violations, re-run your code with the Intel ifort compiler using the -check (or
-check all) option in combination with your other compiler options. When you use the -check
option, the Fortran runtime library will flag occurrences of array bounds violations (and some
other programming errors).

When the runtime library encounters the first array bounds violation, it will halt the program and
provide an error message indicating where the problem occurred. You may need to re-run the
code multiple times if there is more than one array bounds violation.

Note: Code compiled with the -check option may run significantly slower than code compiled
with normal optimization (without the -check option).

Uninitialized Variables

You can use the -init=keyword option (available in the 2015 Intel Fortran compiler and later
versions) to check uninitialized variables. The following keywords can be used with the -init
option:

[no]arrays

Determines whether the compiler initializes variables that are arrays or scalars.
Specifying arrays initializes variables that are arrays or scalars. Specifying noarrays
initializes only variables that are scalars. You must also specify either init snan or init
zero when you specify init [no]arrays.

[no]snan

Determines whether the compiler initializes to signaling NaN all uninitialized variables of
intrinsic type REAL or COMPLEX that are saved, local, automatic, or allocated.

[no]zero

Determines whether the compiler initializes to zero all uninitialized variables of intrinsic
type REAL, COMPLEX, INTEGER, or LOGICAL that are saved, local, automatic, or allocated.

Note: The -init compiler option does not catch all possible uninitialized variables. To find more,
you can use the NAS-developed uninit tool. For information about using this tool, see the NAS
training presentation uninit: Locating Use of Uninitialized Data in Floating Point Computation in
Big Applications.

For more information about segmentation faults, see:

Determining Root Cause of Segmentation Faults SIGSEGV or SIGBUS errors (Intel
Developer Zone)

•

Segmentation Fault (Wikipedia)•

Common Causes of Segmentation Faults (Segfaults) 5

https://www.nas.nasa.gov/hecc/assets/pdf/training/UnInit_Fix_your_code_2012_10_31.pdf
https://www.nas.nasa.gov/hecc/assets/pdf/training/UnInit_Fix_your_code_2012_10_31.pdf
https://software.intel.com/en-us/articles/determining-root-cause-of-sigsegv-or-sigbus-errors
https://en.wikipedia.org/wiki/Segmentation_fault

TotalView

TotalView is a GUI-based debugging tool that provides control over processes and thread
execution, as well as visibility into program state and variables, for C, C++ and Fortran
applications. It also provides memory debugging to detect errors such as memory leaks,
deadlocks, and race conditions. You can use TotalView to debug serial, OpenMP, or MPI codes.

Using TotalView to Debug Your Code

To find out which versions are available as modules, use the module avail command.

Before You Begin

Our current licenses allow using TotalView for up to a total of 256 processes. Use the following
command to find out whether there are unused licenses before you start TotalView:

pfe% /u/scicon/tools/bin/check_licenses -t

Ensure that X11 forwarding is set up on your system. Alternately, you can use the ssh -X or -Y
options to enable X11 forwarding for your SSH session.

Note: If you are using a NAS-supported workstation or compute server, X11 forwarding should
already be set up on your system. If the response of the GUI via X11 forwarding is slow, you will
need to set up a VNC session.

Complete these steps:

Compile your program using the -g option.1.
Start a PBS session.

On Pleiades, Aitken, and Electra:

% qsub -I -X -q devel -lselect=2:ncpus=8:model=xxx,walltime=1:00:00

where xxx is one of the following: san, ivy, has, bro, sky_ele, cas_ait, or rom_ait.

On Endeavour3/4:

% qsub -I -X -lselect=1:ncpus=28:mem=185GB:model=cas_end,walltime=1:00:00 \
-q queue_name@pbspl4

Note: The command line above is too long to be formatted as one line, so it is broken
with a backslash (\).

2.

Test the X11 forwarding with xclock:

% xclock

3.

Debugging with TotalView

Load the module:

% module load totalview/2017.0.12

TotalView 6

The method you use to run TotalView depends on the application you want to debug.

For Serial Applications

Launch TotalView by running the totalview command and specifying the application:

% totalview ./a.out

Or, if your application requires arguments:

% totalview ./a.out -a arg_1 arg_2

For MPI Applications Built with HPE MPT

For older versions of MPT, such as mpt.2.17r13 or mpt.2.21, use the -tv option of
mpiexec_mpt, as shown in this example:

Load the MPT module:

% module load comp-intel/2018.3.222
% module load mpi-hpe/mpt.2.17r13

1.

Launch your program as follows:

% mpiexec_mpt -tv -np 16 ./a.out

2.

TIP: If you want to use the ReplayEngine feature of TotalView, you need to set these two
environment variables:

setenv IBV_FORK_SAFE 1
setenv LD_PRELOAD /nasa/totalview/toolworks/totalview.2017.0.12/ \
Â linux-x86-64/lib/undodb_infiniband_preload_x64.so

Note that the second command line above is too long to be formatted as one line, so it is
broken with a backslash (\).

•

For newer versions of MPT where the -tv option is no longer supported, such as mpt.2.23
or mpt.2.25, use the following method:

Load the latest MPT module:

% module load comp-intel/2018.3.222
% module load mpi-hpe/mpt

1.

Launch your program as follows:

% totalview mpiexec_mpt.real -a -np 16 ./a.out

If the MPI launcher fails to launch the executable and recommends setting
MPI_SHEPHERD=true, then set that environment variable and try running TotalView
again.

2.

•

For more information, see the TotalView documentation.

TotalView 7

http://www.roguewave.com/support/product-documentation/totalview.aspx

GNU Debugger (GDB)

The GNU Debugger (GDB) is available on HECC systems in the /usr/bin directory. GDB can be
used to debug programs written in C, C++, Fortran, and Modula-a.

GDB can perform four main tasks:

Start your program, specifying anything that might affect its behavior.•
Make your program stop on specified conditions.•
Examine what happened when your program has stopped.•
Change things in your program, so you can experiment with correcting the effects of one
bug and go on to learn about another.

•

Be sure to compile your code with -g for symbolic debugging.

GDB is typically used in the following ways:

Start the debugger by itself:

% gdb
(gdb)

•

Start the debugger and specify the executable:

% gdb your_executable
(gdb)

•

Start the debugger, and specify the executable and core file:

% gdb your_executable core-file

(gdb)

•

Attach gdb to a running process:

%gdb your_executable pid
(gdb)

•

At the prompt (gdb), enter commands such as break (for setting a breakpoint), run (to
start running your executable, and step (for stepping into next line). Read man gdb to learn
more on using gdb.

GNU Debugger (GDB) 8

Finding Hotspots in Your Code with the Intel VTune Command-Line
Interface

The Intel VTune Profiler (renamed from Amplifier starting with 2020.0 version) is an analysis and
tuning tool that provides predefined analysis configurations to address various performance
questions. Among them, the hotspots analysis type can help you to identify the most
time-consuming parts of your code and provide call stack information down to the source lines.

The hotspots analysis type allows two data collection methods: (1) user-mode sampling and
tracing collection, and (2) hardware event-based sampling collection. Both methods are
supported on all current Pleiades, Aitken, and Electra Intel processor types: Sandy Bridge, Ivy
Bridge, Haswell, Broadwell, Skylake, and Cascade Lake.

Note: For the AMD Rome nodes, the user-mode sampling and tracing collection is supported but
the hardware event-based sampling collection is not.

The instructions below apply to using the user-mode sampling and tracing collection type, with a
fixed sampling interval of 10 ms.

Setting Up to Run a Hotspots Analysis

Complete these steps to prepare for profiling your code:

Add the -g option to your usual set of compiler flags in order to generate a symbol table,
which is used by VTune during analysis. Keep the same optimization level that you
intend to run in production.

1.

For MPI applications, build the code with the latest version of MPT library, such as
mpi-hpe/mpt.2.25, as it will likely work better with Intel Vtune.

2.

Start a PBS interactive session or submit a PBS batch job.3.
Load a VTune module in the interactive PBS session or PBS script, as follows:

module load vtune/2021.9

4.

You can now run an analysis, as described in the next section.

Running a Hotspots Analysis

Run the vtune command line that is appropriate for your code, as listed below. Use the -collect
(or -c) option to run the hotspots collection and the -result-dir (or -r) option to specify a
directory.

Note: The vtune command replaces amplxe-cl, which was used prior to the 2020.0 version.

Running a Hotspots Analysis on Serial or OpenMP Code

To profile a serial or OpenMP application (for example):

vtune -collect hotspots -result-dir r000hs

Data collected by VTune for the a.out application are stored in the r000hs directory.

Finding Hotspots in Your Code with the Intel VTune Command-Line Interface 9

Running a Hotspots Analysis on Python Code

To profile a Python application:

vtune -collect hotspots -result-dir r000hs /full/path/to/python3 python_script

Data collected by VTune while running the Python script will be stored in the r000hs directory.

Note: See Additional Resources below for more information about Python code analysis.

Running a Hotspots Analysis on MPI Code Using HPE MPT

To profile an MPI application using HPE MPT:

setenv MPI_SHEPHERD true
setenv MPI_USING_VTUNE true
mpiexec -np XX vtune -collect hotspots -result-dir

Note: If your vtune run fails with MPT ERROR and a suggestion to set additional MPT environment
variables, for example MPI_UNBUFFERED_STDIO, follow the suggestion and try again.

At the end of the collection, VTune generates a summary report that is written by default to
stdout. The summary includes information such as the name of the compute host, operating
system, CPU, elapsed time, CPU time, and average CPU utilization.

Data collected by VTune are stored and organized with one directory per host. Within each
directory, data are further grouped into subdirectories by rank. As an example, for a 48-rank MPI
job running on two nodes with 24 ranks per node, VTune generates two directories,
r000hs.r587i0n0 and r000hs.r587i0n1, where each directory contains 24 subdirectories,
(data.[0-23]).

To reduce the amount of data collected, consider profiling a subset of the MPI ranks, instead of
all of them. For example, to profile only rank 0 of the 48-rank MPI job:

mpiexec -np 1 vtune -collect hotspots -result-dir r000hsÂ a.out : -np 47 a.out

Viewing Results with the VTune GUI

Once data are collected, view the results with the VTune graphical user interface (GUI),
vtune-gui. Since the Pleiades front-end systems (PFEs) do not have sufficient memory to run
vtune-gui, run it on a compute node as follows:

On a PFE, run echo $DISPLAY to find its setting (for example, pfe22:102.0).1.
On the same PFE window, start a VNC session.2.
On your desktop, use a VNC viewer (for example, TigerVNC) to connect to the PFE.3.
On the PFE (via the VNC viewer window), request a compute node either through an
interactive PBS session
(qsub -I -X) or a reservable front end (pbs_rfe).

4.

On the compute node, start vtune-gui with name of the result directory, for example,
r000hs.

compute_node% module load vtune/2021.9
compute_node% vtune-gui r000hs

5.

Finding Hotspots in Your Code with the Intel VTune Command-Line Interface 10

Generating a Report

You can also use the vtune command with the -report option to generate a report. There are
several ways to group data in a report, as follows:

To report time grouped by functions (in descending order) and print the results to stdout,
or to a specific output text file, such as output.txt:

vtune -report hotspots -r r000hs

or

vtune -report hotspots -r r000hs -report-output output

•

To report time grouped by source lines, in descending order:

vtune -report hotspots -r r000hs -group-by source-line

•

To report time grouped by module:

vtune -report hotspots -r r000hs -group-by module

•

You can also generate a report showing the differences between two result directories (such as
from two different ranks or two different runs), or select different types of data to display in a
report, as follows:

To report the differences between two result directories:

vtune -report hotspots -r r000hs -r r001hs

•

To display CPU time for call stacks:

vtune -report callstacks -r r000hs

•

To display a call tree and provide CPU time for each function:

vtune -report top-down -r r000hs

•

Additional Resources

See the following Intel VTune articles and documentation:

hotspots Command Line Analysis•
hotspots Analysis for CPU Usage Issues•
Python Code Analysis•

Finding Hotspots in Your Code with the Intel VTune Command-Line Interface 11

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/command-line-interface/running-command-line-analysis/run-basic-hotspots-analysis-command-line.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/algorithm-group/basic-hotspots-analysis.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/python-code-analysis.html

Using Gprof for Performance Analysis

Gprof is a compiler-assisted performance profiler for C, Fortran, and Pascal applications running
on Unix systems. You can use Gprof to help identify hotspots in your application where code
optimization efforts may be most useful.

Gprof uses a hybrid of sampling and instrumentation, and provides the following information:

The number of calls to each function and the amount of time spent there. •
Information about the caller-callee relationship.•

Note: Gprof only measures the user code; it does not provide information on time spent in the
kernel (such as system calls or I/O wait time).

The profiling data will be collected in a file called gmon.out, which will be generated at the end of
a successful, uninterrupted run.

Gprof is available in the /usr/bin directory on Pleiades. To use this tool, follow the instructions in
the sections below.

Compiling and Linking to Enable Profiling with Gprof

To enable profiling with Gprof, add one of the options shown below when you compile your
code:

With Intel compilers, add the -p option (alternatively you can add -pg, which is
deprecated, but still works).

•

With PGI compilers, add the -pg option.•
With GNU compilers, add the -pg option. You might also have to use the -O0 option, if you
do not get meaningful profiling results when using higher levels of optimization.

•

Collecting Profiling Data

To collect profiling data, simply run your gprof-enabled executable the same way you would run
a non-gprof-enabled executable. The data will be collected in a file called gmon.out.

OpenMP Applications

If you are using an OpenMP application, gprof does not generate per-thread profiling data. Only
one gmon.out file is produced.

Note: If a file named gmon.out already exists in the directory, it will be overwritten.

MPI Applications

For MPI applications, if you use the Intel MPI library, no additional steps are required before you
run your code. However, if you use the HPE MPT library, you also need to set the MPI_SHEPHERD
variable as follows before you run the code; otherwise, the timing information will not be shown:

export MPI_SHEPHERD=true (bash)
setenv MPI_SHEPHERD true (csh)

Using Gprof for Performance Analysis 12

Each MPI process will generate a profile with the same filename, gmon.out. These files will
overwrite one another when they are written to a global filesystem. Therefore, to avoid this
behavior and produce a profile with a distinct filename for each process, do:

export GMON_OUT_PREFIX=gmon.out (bash)
setenv GMON_OUT_PREFIX gmon.out (csh)

For example:

#PBS ...

module load comp-intel/2020.4.304
module load mpi-hpe/mpt.2.25
export MPI_SHEPHERD=true
export GMON_OUT_PREFIX=gmon.out

mpiexec a.out

This operation will generate a file called gmon.out.pid, where pid is the process ID of an MPI
process. With N ranks, you should get N such files, with filenames differing only in their .pid
extensions. You can then analyze an individual gmon.out.pid file or several at the same time.

Generating ASCII Gprof Output

You can use the gprof command to convert binary data in gmon.out into a human-readable
format.

gprof [options] executable_name [gmon.out] [> analysis.output]

There are two types of output: flat profile and call graph.

The flat profile shows how much time your program spent in each function, and how many times
that function was called. This profile helps to identify hotspots in your application. Hotspots are
shown at the top of the flat profile.

The call graph shows, for each function, which functions called it; which other functions it called;
and how many times the calls occurred. The call graph also provides an estimate of how much
time was spent in the subroutines of each function, which can suggest places where you might
try to eliminate function calls that use a lot of time.

Commonly Used gprof Command Options

Some common options are described here. Read man gprof for more information.

-p prints a flat profile. For example:

gprof -p a.out gmon.out.1001 gmon.out.1002

•

-q prints a call graph. For example:

gprof -q a.out gmon.out.*

•

-s sums up the information from multiple profiling data files and produces a file called
gmon.sum for analysis. For example:

gprof -s a.out gmon.out.*
gprof a.out gmon.sum > analysis.output

•

-b omits verbose texts that explain the meaning of all of the fields in the tables.•

Using Gprof for Performance Analysis 13

Performance Analysis

Getting a Quick Performance Overview with Intel APS

The Intel Application Performance Snapshot (APS) tool provides a quick overview of your
application's performance on processor and memory usage, message passing interface (MPI),
and I/O, as well as load imbalance between threads or processes. In addition to the performance
metrics listed below, APS also provides suggestions for performance enhancement opportunities
and additional Intel profiling tools you can use to get more in-depth analysis.

Note: Although the Intel APS tool can be used for any of the Pleiades, Aitken, and Electra Intel
Xeon processor types, it does not fully support the Sandy Bridge and Haswell processor types.
APS cannot be used for the Aitken Rome processors.

Before You Begin

Note the following information:

The Intel C/C++ or Fortran Compiler is not required, but is recommended. However,
analysis of OpenMP imbalance is only available for applications that use the Intel
OpenMP runtime library.

•

There is no support for OpenMPI.•
Analysis of MPI imbalance is only available when you are using the Intel MPI Library
version 2017 and later. (With the exception of the MPI imbalance metric, APS MPI
analysis works for applications that use the NAS-recommended HPE MPT library.)

•

TIP: The NAS-developed MPIProf tool provides similar MPI analysis with MPI imbalance
information included.

Running an APS Analysis

On Pleiades, APS is available via the vtune/2021.9 module. See aps --help for available APS
options.

To run an analysis for serial and OpenMP applications:

module load vtune/2021.9
aps <options> ./a.out

To run an analysis for MPI applications:

module load vtune/2021.9

module load mpi-hpe/mpt.2.25

setenv MPI_SHEPHERD true
setenv MPI_USING_VTUNE true
mpiexec -np xx aps <options> ./a.out

TIP: The process/thread pinning tools mbind.x and omplace can be used with aps. Either of the
following two methods may work:

mpiexec -np xx aps mbind (or omplace) <mbind or omplace options> a.out•
mpiexec -np xx mbind (or omplace) <mbind or omplace options> aps <options> a.out•

Performance Analysis 14

At the end of the run, APS provides a directory that contains the data collected during the
analysis. The default name of the directory is aps_result_yyyymmdd.

WARNING: The directory will be overwritten if you run another APS analysis in the same
directory on the same day.

To send the results to another directory, you can include --result-dir=dir_name or -r=dir_name
option in the aps command line (where dir_name represents the directory name of your choice).

Viewing the Report

APS provides a text summary and an HTML file named aps_report_yyyymmdd_hhmmss.html (where
yyyymmdd_hhmmss is the date and time when the HTML file is created). The HTML file contains the
same information as the text summary, but also offers the following features when you open the
file with a web browser:

A description of each metric is shown when you hover your mouse over the metric name.•
Possible performance issues of your run are highlighted in red.•
Suggestions with links to Intel tools are provided to help with performance enhancement.•

Note: NAS security policy prohibits using web browsers on Pleiades. To view the HTML file,
transfer it to your own workstation.

For Serial and OpenMP Applications

For serial or OpenMP applications, no action is required to generate the reports. At the end of
the run, APS automatically generates the text summary (appended to your application's stdout)
and the HTML file.

For MPI Applications

For MPI applications, you must generate the text summary (shown on your screen) and HTML
file after the analysis completes, as follows:

aps --report=dir_name

where dir_name is the name of the directory created at the end of the analysis run.

If the summary report shows that your application is MPI-bound, run the following command to
get more details about message passing, such as message sizes, data transfers between ranks
or nodes, and time in collective operations:

aps-report <options> dir_name

See aps-report --help for available options.

You can also rerun the analysis after setting additional environmental variables. For example:

setenv MPS_STAT_LEVEL n
or
setenv APS_STAT_LEVEL n

where n is 2, 3 or 4 to get more detailed information on your application's MPI performance.

Getting a Quick Performance Overview with Intel APS 15

Note: If MPS_STAT_LEVEL (or APS_STAT_LEVEL) is set to 3 or 4, you must use
mpi-hpe/mpt.2.18r160 or a later version when you run the analysis to avoid a segmentation
fault (SEGV).

Quick Metrics Reference

Intel APS collects the metrics described in the following list.

Note: These descriptions are adapted from the Application Performance Snapshot User's Guide
for Linux OS, where you can find additional details about each metric.

Elapsed Time
Execution time of specified application in seconds.

SP GFLOPS
Number of single precision giga-floating point operations (gigaflops) calculated per
second. SP GFLOPS metrics are only available for 3rd Generation Intel Core processors,
5th Generation Intel processors, and 6th Generation Intel processors.

DP GFLOPS
Number of double precision giga-floating point operations calculated per second. DP
GFLOPS metrics are only available for 3rd Generation Intel Core processors, 5th
Generation Intel processors, and 6th Generation Intel processors.

Cycles per Instruction Retired (CPI) Rate
The amount of time each executed instruction took measured by cycles. A CPI of 1 is
considered acceptable for high performance computing (HPC) applications, but different
application domains will have varied expected values. The CPI value tends to be greater
when there is long-latency memory, floating-point, or SIMD operations, non-retired
instructions due to branch mis-predictions, or instruction starvation at the front end.

CPU Utilization
Helps evaluate the parallel efficiency of your application. Estimates the utilization of all
the logical CPU cores in the system by your application. 100% utilization means that your
application keeps all the logical CPU cores busy for the entire time that it runs. Note that
the metric does not distinguish between useful application work and the time that is
spent in parallel runtimes.

MPI Time
Time spent inside the MPI library. Values more than 15% might need additional
exploration on MPI communication efficiency. This might be caused by high wait times
inside the library, active communications, non-optimal settings of the MPI library. See
MPI Imbalance metric to see if the application has load balancing problem.

MPI Imbalance
Mean unproductive wait time per process spent in the MPI library calls when a process is
waiting for data.

Serial Time
Time spent by the application outside any OpenMP region in the master thread during
collection. This directly impacts application Collection Time and scaling. High values
might signal a performance problem to be solved via code parallelization or algorithm
tuning.

OpenMP Imbalance
Indicates the percentage of elapsed time that your application wastes at OpenMP
synchronization barriers because of load imbalance.

Memory Stalls
Indicates how memory subsystem issues affect the performance. Measures a fraction of
slots where pipeline could be stalled due to demand load or store instructions. This
metric's value can indicate that a significant fraction of execution pipeline slots could be
stalled due to demand memory load and stores. See the second level metrics to define if

Getting a Quick Performance Overview with Intel APS 16

https://www.intel.com/content/www/us/en/develop/documentation/application-snapshot-user-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation/application-snapshot-user-guide/top.html

the application is cache- or DRAM-bound and the NUMA efficiency.
Cache Stalls

indicates how often the machine was stalled on L1, L2, and L3 cache. While cache hits
are serviced much more quickly than hits in DRAM, they can still incur a significant
performance penalty. This metric also includes coherence penalties for shared data.

DRAM Stalls
Indicates how often the CPU was stalled on the main memory (DRAM) because of
demand loads or stores.

DRAM Bandwidth
The metrics in this section indicate the extent of high DRAM bandwidth utilization by the
system during elapsed time. They include:

Average Bandwidth: Average memory bandwidth used by the system during
elapsed time.

◊

Peak: Maximum memory bandwidth used by the system during elapsed time.◊
Bound: The portion of elapsed time during which the utilization of memory
bandwidth was above a 70% threshold value of the theoretical maximum memory
bandwidth for the platform.

◊

Some applications can execute in phases that use memory bandwidth in a non-uniform
manner. For example, an application that has an initialization phase may use more
memory bandwidth initially. Use these metrics to identify how the application uses
memory through the duration of execution.

NUMA: % of Remote Accesses
In non-uniform memory architecture (NUMA) machines, memory requests missing last
level cache may be serviced either by local or remote DRAM. Memory requests to remote
DRAM incur much greater latencies than those to local DRAM. It is recommended to keep
as much frequently accessed data local as possible. This metric indicates the percentage
of remote accesses, the lower the better.

Vectorization
The percentage of packed (vectorized) floating point operations. The higher the value,
the bigger the vectorized portion of the code. This metric does not account for the actual
vector length used for executing vector instructions. As a result, if the code is fully
vectorized, but uses a legacy instruction set that only utilizes a half of the vector length,
the Vectorization metric is still equal to 100%.

Instruction Mix
This section contains the breakdown of micro-operations by single precision (SP FLOPs)
and double precision (DP FLOPs) floating point and non-floating point (non-FP)
operations. SP and DP FLOPs contain next level metrics that enable you to estimate the
fractions of packed and scalar operations. Packed operations can be analyzed by the
vector length (128, 256, 512-bit) used in the application.

FP Arith/Mem Rd Instr. Ratio: This metric represents the ratio between
arithmetic floating point instructions and memory read instructions. A value less
than 0.5 might indicate unaligned data access for vector operations, which can
negatively impact the performance of vector instruction execution.

◊

FP Arith/Mem Wr Instr. Ratio: This metric represents the ratio between
arithmetic floating point instructions and memory write instructions. A value less
than 0.5 might indicate unaligned data access for vector operations, which can
negatively impact the performance of vector instruction execution. The metric
value might indicate unaligned access to data for vector operations.

◊

Additional Resources

Getting Started with Application Performance Snapshot - Linux OS•
Application Performance Snapshot User's Guide for LinuxOS•

Getting a Quick Performance Overview with Intel APS 17

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-application-performance-snapshot/top.html
https://www.intel.com/content/www/us/en/develop/documentation/application-snapshot-user-guide/top.html

Using Intel Advisor for Better Threading and Vectorization

You can use Intel Advisor to identify issues and help you with threading and vectorization
optimization on the specific Intel processors that your Fortran, C, or C++ applications run on.
The software, which is available as a module on HECC systems, provides recommended
workflows for these two optimization areas.

Intel Advisor offers both a command-line interface (CLI) and a graphical user interface (GUI). We
recommend that you use the CLI (advixe-cl) in a PBS batch job to collect data, and then use the
GUI (advixe-gui) to analyze the result, as it provides a more comprehensive view than the CLI.
However, please note that learning how to navigate the GUI will take some effort and time. For
more information, see the Intel documentation, Intel Advisor GUI.

Analysis Types

Each Intel Advisor workflow involves a combination of some of the analysis types listed below.
For detailed information about these workflows, see the Intel documentation, Getting Started
with Intel Advisor, or access the CLI help page by running advixe-cl -h workflow.

Survey analysis
Helps to identify loop hotspots and provides recommendations for how to fix
vectorization issues.

Trip counts and flops analysis
Counts the number of times loops are executed and provides data about floating-point
operations (flops), memory traffic, and AVX-512 mask usage. This analysis requires more
instrumentation and will perturb your application more. Thus, it takes longer time than
the survey analysis.

Dependencies analysis
Checks for real data dependencies in loops the compiler did not vectorize because of
assumed dependencies.

Memory access patterns analysis
Checks for memory access issues such as non-contiguous, or non-unit stride access.

Suitability analysis
Predicts the maximum speed-up of your application, based on the inserted annotations
and a variety of what-if modeling parameters you can experiment with. Use this
information to choose the best candidates for parallelization with threads.

Roofline analysis
Runs two analyses one by one: (1) the survey analysis, and (2) the trip counts and flops
analysis. A roofline chart is then generated which plots an application's achieved
floating-point performance and arithmetic intensity (AI) against the machine's maximum
achievable performance.

Note: For more information about running this analysis, see Roofline Analysis with Intel
Advisor.

Compiling Your Code

At the minimum, you should include the following options when you compile your code:

-g -O2 (or higher)
-g -O2 (or higher) -qopenmp (for OpenMP applications)

Depending on the processors your application runs on, you may consider adding an option that
instructs the compiler to generate a binary that targets certain instruction sets. The options are

Using Intel Advisor for Better Threading and Vectorization 18

https://software.intel.com/en-us/advisor-user-guide-intel-advisor-gui-and-microsoft-visual-studio-integration
https://software.intel.com/en-us/get-started-with-advisor-vectorization-advisor
https://software.intel.com/en-us/get-started-with-advisor-vectorization-advisor

listed in the following table.

Processor Type Option

Skylake -xCORE-AVX512

Broadwell, Haswell -xCORE-AVX2

IvyBridge, SandyBridge -xAVX

Multiple auto-dispatch code paths -axCORE-AVX512,CORE-AVX2,AVX -xSSE4.2

Collecting Data

Load the module and collect data:

module load advisor/2018
advixe-cl -collect=<string> [-action-option] [-global-option] [--] <target> [<target options>]

where:

<string> is one of the following analysis types: survey, tripcounts, dependencies, map, or
suitability

Note: For non-MPI applications, <string> can also be roofline. For MPI applications,
roofline analysis can only be done by performing survey and tripcounts in two separate
steps.

•

<target> is your executable.•

For example:

advixe-cl -collect survey -project-dir my_result -- ./a.out

For information about action-option and global-option, run advixe-cl -h collect.

Analyzing the Result

The data collected are stored in a directory tree (for example, my_result), which you specify
using an action-option called -project-dir.

Depending on the analysis type used in data collection, you might find the subdirectories hsxxx,
trcxxx, dpxxx, and mpxxx in the my_result/e000 directory (for serial or pure OpenMP applications)
or in the my_result/rank.n directory (for the nth-rank of an MPI application).

To view the result on a Pleiades front end system (PFE), use either the Intel Advisor GUI
(advixe-gui) or the CLI (advixe-cl).

Use the Intel Advisor GUI

Load the module and run advixe-gui:

module load advisor/2018
advixe-gui my_result

After the GUI starts, click Show My Result. In the main window, you can choose one of three
panels: Summary (default view), Survey & Roofline, or Refinement Reports. All three are
described below.

Using Intel Advisor for Better Threading and Vectorization 19

Summary
Might show gigaflops count, AI, number of threads, loop metrics, vectorization
gain/efficiency, top time-consuming loops, and platform information.

Survey & Roofline
Might show the roofline chart, source code, assembly code, detailed info on flops, AI,
efficiency, reason for no vectorization of the top-time-consuming loops.

Refinement Reports
Might show memory access patterns report (1-stride, 0-stride, constant-stide, irregular
stride) and dependencies report.

Use the Intel Advisor CLI

Load the module and run advixe-cl:

module load advisor/2018
advixe-cl -report=<string> [-action-option] [-global-option] [--] <target> [<target options>]

For information on <string>, action-option, and global-option, run: advixe-cl -h report

Note: If the job runs too quickly, there is not enough data collected to generate a report.

Additional Resources

Getting Started with Intel Advisor•
Intel Advisor CLI•
Intel Advisor GUI•
Intel Advisor presentation by Intel engineer Jackson Marusarz•
Transforming Serial Code to Parallel Using Threading and Vectorization Part 1 and Part 2.•

Using Intel Advisor for Better Threading and Vectorization 20

https://software.intel.com/en-us/get-started-with-advisor-vectorization-advisor
https://software.intel.com/en-us/advisor-user-guide-intel-advisor-cli
https://software.intel.com/en-us/advisor-user-guide-intel-advisor-gui-and-microsoft-visual-studio-integration
http://www.cs.utexas.edu/~pingali/CS377P/2018sp/lectures/Intel_Advisor_2018-jackson.pdf
https://software.intel.com/en-us/videos/from-serial-to-awesome-transforming-serial-code-to-parallel-using-threading-and-vectorization
https://software.intel.com/en-us/videos/from-serial-to-awesome-part-2-advanced-code-vectorization-and-optimization

Running a Roofline Analysis with Intel Advisor

A roofline analysis helps you determine whether your application has achieved the best possible
performance, limited by the machine capabilities. If not, you can explore the possibility of
algorithm changes to improve performance.

Running the Analysis

The Intel Advisor tool is available as a module on HECC resources. To do a roofline analysis, load
the module and run two analyses: survey and tripcounts, as follows:

module use /nasa/modulefiles/testing
module load mpi-hpe/mpt.2.18r160
module load advisor/2018
mpiexec -np x advixe-cl -collect survey -project-dir my_result -- ./a.out
mpiexec -np x advixe-cl -collect tripcounts -flop -project-dir my_result -- ./a.out

Note: Be sure to specify the same directory (-project-dir) for the survey and tripcounts
analyses. The tripcounts run will take longer time than the survey run.

If these two runs are successful, you can start the Intel Advisor GUI and choose one of the ranks
to analyze.

Reviewing the Results

To start the GUI:

advixe-gui my_result

To see a roofline chart for the rank chosen, do one of the following:

In the navigation panel, click the black icon (
black-icon.png
) under Run Roofline.

•

Click the Survey & Roofline panel in the main window, then click the vertical bar
labeled ROOFLINE.

•

In the sample roofline chart shown below, the X axis is arithmetic intensity (measured in
flops/byte) and the Y axis is the performance in Gflops/second, both in logarithmic scale:

Running a Roofline Analysis with Intel Advisor 21

roofline_example(1).png

Note: This sample chart is reproduced from the Intel documentation, Getting Started with Intel
Advisor.

Before it collects data on your application, Intel Advisor runs benchmarks to measure the
hardware limitations of your machine. It plots these on the chart as lines, called roofs. The
horizontal lines represent the number of floating point computations of a given type your
hardware can perform in a given span of time. The diagonal lines are representative of how
many bytes of data a given memory subsystem can deliver per second.

In the chart, each dot is a loop or function in your application. The dot's position indicates the
performance of the loop or function, which is affected by its optimization and its arithmetic
intensity. The dot's size and color indicate how much of the total application time the loop or
function takes. In the sample chart shown above, loops A and G (large red dots), and to a lesser
extent loop B (yellow dot far below the roofs), are the best candidates for optimization. Loops C,
D, and E (small green dots) and H (yellow dot) are poor candidates because they do not have
much room to improve.

Important: Intel Advisor uses a cache-aware roofline model. In the classic roofline model, a
kernel's arithmetic intensity would change with problem size or cache usage optimization,
because the byte count was based on DRAM traffic only. This is not the case in the cache-aware
roofline model, where arithmetic intensity is a fixed value tied to the algorithm itself; it only
changes when the algorithm is altered, either by the programmer or occasionally by the
compiler.

Additional Resources

Getting Started with Intel Advisor•
Intel Advisor Roofline•
Getting Started with Intel Advisor Roofline Feature•
Intel video: Introduction to Intel Advisor Roofline Feature•
Roofline: An Insightful Visual Performance Model for Floating-Point Programs and•

Running a Roofline Analysis with Intel Advisor 22

https://software.intel.com/en-us/get-started-with-advisor-vectorization-advisor
https://software.intel.com/en-us/get-started-with-advisor-vectorization-advisor
https://software.intel.com/en-us/get-started-with-advisor-vectorization-advisor
https://software.intel.com/en-us/articles/intel-advisor-roofline
https://software.intel.com/en-us/articles/getting-started-with-intel-advisor-roofline-feature
https://software.intel.com/en-us/videos/roofline-analysis-in-intel-advisor-2017
https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf

Multicore Architecture, 2009 (PDF)
Cache-aware Roofline Model: Upgrading the Loft, 2013 (PDF)•

Running a Roofline Analysis with Intel Advisor 23

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Using MPIProf for Performance Analysis

MPIProf is a lightweight, profile-based application performance analysis tool that works with
many MPI implementations, including HPE MPT. The tool gathers statistics in a counting mode
via PMPI, the MPI standard profiling interface.

MPIProf can report profiling information about:

Collective and/or point-to-point MPI functions called by an application (time spent,
number of calls, and message size)

•

MPI and POSIX I/O statistics•
Memory used by processes on each node•
Call path information of MPI calls (requires the -g compiler option and the -cpath mpiprof
option)

•

There are two ways you can use MPIProf:

The mpiprof profiling tool on the command line:

mpiexec -n <N> mpiprof [-options] [-h|-help] a.out [args]

•

MPIProf API routines•

mpiprof Usage Example

Because the command-line method does not require changing or recompiling your application,
we recommend this method for general use. To run mpiprof, load the modulefiles for your
compiler, MPI library, and the mpiprof tool, then run the command line. For example:

module load comp-intel/2015.3.187 mpi-hpe/mpt
module load /u/scicon/tools/modulefiles/mpiprof
mpiexec -n 128 mpiprof -o mpiprof.out a.out

Note: If the -o option is not included, the profiling results are written to the mpiprof_stats.out file,
or the <a.out>_mpiprof_stats.out file if the executable name is known.

For more details about using this tool, see the MPIProf user guide in the /u/scicon/tools/
directory on Pleiades:

/u/scicon/tools/opt/mpiprof/default/doc/mpiprof_userguide.pdf

MPIProf was developed by NAS staff member Henry Jin.

Using MPIProf for Performance Analysis 24

Using MPInside for Performance Analysis and Diagnosis

MPInside, an MPI application performance analysis and diagnostic tool from HPE, is a lightweight
program that can be used with thousands of ranks. The tool is profile-based via PMPI, the MPI
standard profiling interface. An MPInside analysis can provide you with communication statistics
(collective and point-to-point) as well as information that can help you diagnose communication
issues such as:

Slow MPI communications caused by non-synchronous send/receive pairs•
Load imbalance (compute time or message bandwidth) among ranks•
Reasons a code runs well with one MPI library or one platform, but not another•

In addition to MPI communication profiling, MPInside provides the following optional features:

MPI performance modeling•
I/O measurement•

MPInside supports the full MPI 2.2 standard and the commonly used MPI libraries: HPE MPT, Intel
MPI, and OpenMPI.

Note: Some features may be limited to HPE MPT.

Basic Usage

Most features of MPInside do not require instrumentation, recompiling, or relinking of your
application. However, using the -g compiler flag is recommended.

The basic MPInside measurement produces a flat profile. No information is provided about the
source lines that make the MPI calls.

Environment Setup

To set up your environment to use MPInside, load the MPInside module and an MPI library
module. Set the MPINSIDE_LIB environment variable to match the MPI library module. For
example:

module load MPInside/3.6.2

module load mpi-hpe/mpt
setenv MPINSIDE_LIB MPT (or IMPI, or OPENMPI)

Note: MPINSIDE_LIB defaults to MPT.

Communication Profiling

To perform an analysis using MPInside, run the following commands (where XX = the number of
MPI processes):

mpiexec -np XX MPInside a.out

Note: The MPInside command is case-sensitive.

Using MPInside for Performance Analysis and Diagnosis 25

By default, MPInside measures the elapsed times of the MPI functions and collects message
statistics. After the MPI application completes successfully, the measurement and the statistics
data are reported in a text file called mpinside_stats. This output file contains five sections:

The elapsed time of each function in seconds (broken down into columns for computation
time and for various MPI function times, with one rank per row)

•

Total megabytes (MBytes) sent by each rank•
Number of "send" calls by each rank•
Total MBytes received by each rank•
Number of "recv" calls by each rank•

You can import the mpinside_stats file to an Excel spreadsheet and plot the data for visual
analysis (for example, analysis of possible load imbalance or communication characteristics).
You can also compute derived metrics, such as average message size, from the mpinside_stats
file.

Additional Features

MPInside uses environment variables to set all of its options. These optional variables are
documented in the mpinside man page.

Recommended Features

We recommend the following settings:

MPINSIDE_LITE=1

Use when synchronization frequency is very high
MPINSIDE_CUT_OFF=0.0

Do not cut off reporting of any MPI functions
MPINSIDE_OUTPUT_PREFIX={run i.d.}

Change default report file name
MPINSIDE_PRINT_ALL_COLUMNS=1

Enable reporting of all columns (even if the values are zero) to allow easier comparisons
between runs

MPINSIDE_PRINT_SIZ_IN_K=1

Print in KB units instead of MB

Advanced Features

The advanced features described below may also be useful.

MPINSIDE_SHOW_READ_WRITE

Measures the I/O time and includes several columns in the mpinside_stats output file indicating
the time, number of Mbytes, and number of calls associated with the libc I/O functions. Note
that the MPI function times and I/O times are subtracted from the total elapsed run times, and
the result is reported as "Comput" time.

MPINSIDE_SIZE_DISTRI [T+]nb_bars[:first-last]

Using MPInside for Performance Analysis and Diagnosis 26

Prints a histogram of the request sizes distribution at the end of mpinside_stats for each rank
specified in [:first-last]. If T+ is specified, size distribution time histograms are also printed. For
example, setting MPINSIDE_SIZE_DISTRI to T+12:0-47 will print two histograms, as follows, for
each rank (from 0 to 47) at the end of mpinside_stats:

Size distribution for sizes 0, 32, 64, 128, 256, 512, ..., up to 655361.
Size distribution time histogram2.

MPINSIDE_CALLSTACK_DEPTH

Unwinds the stack up to the depth specified, and creates an mpinside_clstk.xxx file for each
rank. The mpinside_clstk.xxx files can be post-processed with the utility MPInside_post -l to get
the routine names and source line numbers. Use the -h option of MPInside_post to get more
information.

MPINSIDE_EVAL_COLLECTIVE_WAIT

Checks whether a slow collective operation (such as MPI_Bcast or MPI_Allreduce) is caused by
some ranks reaching the rendezvous point much later than others.

Setting this variable will put an MPI_Barrier and time it before any MPI collective operation. This
assumes that the time of a collective operation is the sum of the time for all processors to
synchronize plus the time of the actual operation (i.e, the physical transfer of data). In the
mpinside_stats output file, the "b_xxx" column will give the MPI_Barrier time of the
corresponding xxx MPI collective function, and the "xxx" column gives the remaining time.

MPINSIDE_EVAL_SLT

Checks whether a slow point-to-point communication is caused by late senders.

Setting this variable will measure the time the Sends arrived late compared to Recv or Wait
arrivals. In the mpinside_stats output file, the column "w_xxx" (for example, w_wait or w_recv)
represents the send-late-time (SLT) for the corresponding xxx function.

Note: The MPINSIDE_EVAL_COLLECTIVE_WAIT and MPINSIDE_EVAL_SLT variables are useful for
identifying some problems that are intrinsic to an application, i.e., issues that cannot be
remedied even with an ideal system (zero latency and infinite bandwidth).

References

mpinside man page•
MPInside Reference Manual on the PFEs:
/nasa/sgi/MPInside/3.6.2/doc/mpinside_3.5_ref_manual.pdf

•

HPE Online Documentation: MPInside Reference Guide•
Publication: MPInside: a Performance Analysis and Diagnostic Tool for MPI Applications•

Using MPInside for Performance Analysis and Diagnosis 27

https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00037729en_us
http://dl.acm.org/citation.cfm?id=1712605.1712620

Using the IOT Toolkit for I/O and MPI Performance Analysis

IOT is a licensed toolkit developed by I/O Doctors, LLC, for I/O and MPI instrumentation and
optimization of high-performance computing programs. It allows flexible and user-controllable
analysis at various levels of detail: per job, per MPI rank, per file, and per function call. In
addition to information such as time spent, number of calls, and number of bytes transferred,
IOT also provides the time of the I/O and/or MPI call, and where in the file the I/O occurs.

IOT can be used to analyze Fortran, C, and C++ programs as well as script-based applications,
such as R, MATLAB, and Python. The toolkit works with multiple MPI implementations, including
HPE MPT and Intel MPI. It is available for use on Pleiades, Electra, and Endeavour. Basic
instructions are provided below. If you are interested in more advanced analysis, contact User
Services at support@nas.nasa.gov.

Setting Up IOT

To set up IOT, complete the following steps. You only need to do these steps once.

Add /nasa/IOT/latest/bin64 to your search path in your .cshrc file (for csh users) or .profile
file (for bash users), as shown below. Be sure to add this line above the line in the file
that checks for the existence of the prompt.

For csh, use:
set path = ($path /nasa/IOT/latest/bin64)

For bash, use:
PATH=$PATH:/nasa/IOT/latest/bin64

1.

Run the iot -V command to check whether IOT is working. The output should be similar
to the following example:

% iot -V
Using IOT install /nasa/IOT/v4.0.04/
 bin64/iot v4.0.04 built Jun 14 2017 11:23:19
 lib64/libiot.so v4.0.04 built Jun 14 2017 11:23:19
 libiotperm.so v3.2.08 "Nasa_Advanced_SuperComputing" 5/11/2018 *

2.

In your home directory, untar the /nasa/IOT/latest/ipsd/user_ipsd.tgz file:

% tar xvzf /nasa/IOT/latest/ipsd/user_ipsd.tgz

A directory called ipsd should be created under your $HOME directory.

3.

Confirm that ipsd can be started:

% ipsctl -A `hostname -s`
No shares detected

4.

Test IOT using the dd utility. First, create a directory called "dd" and change (cd) into it.
Then, run the iot command as follows:

% iot dd if=/dev/zero of=/dev/null count=20 bs=4096
20+0 records in
20+0 records out
81920 bytes (82 kB) copied, 0.000123497 s, 663 MB/s

In addition to the output shown above, you should also find a file called iot.xxxxx.ilz.
The ILZ file is the output from the iot command.

5.

Using IOT to Analyze Your Application

Using the IOT Toolkit for I/O and MPI Performance Analysis 28

mailto:support@nas.nasa.gov

Once IOT is set up, follow these steps to analyze your application.

Create a configuration file that tells IOT what you want to instrument or monitor. You can
use one of the following sample configuration files, which are available in the
/nasa/IOT/latest/icf directory:
trc_summary.icf

Use this file to start your first I/O analysis. This file provides a summary of
information on the total counts, time spent, and bytes transferred for each I/O
function of each file. For MPI applications, it also provides the same information
obtained with mpi_summary.icf (described below).

trc_interval.icf
In addition to the data collected by trc_summary.icf, this file provides more details
for the read/write MPI function, per 1000-ms interval, including: the wall time
when the calls occur; counts; time spent; and bytes transferred.

trc_events.icf
In addition to the data collected by trc_summary.icf, this file provides the most
details for each read/write function at the per-event level, including: the wall time
when each call occurs; the time spent for the call; and the number of bytes
transferred.

mpi_summary.icf
Use this file to start your first MPI analysis. The file provides a summary of
information such as the total count, time spent, and bytes transferred for all of
the MPI functions called by the MPI ranks.

mpi_interval.icf
In addition to the information collected by mpi_summary.icf, this file provides
more details for the MPI functions, per 1000-millisecond (ms) interval, including:
the wall time when the calls occur; counts; time spent; and bytes transferred.

mpi_events.icf
This file provides the most details for each MPI function, at the per-event level,
including: the wall time when each call occurs; the time spent for the call; and the
number of bytes transferred.

1.

Modify the mpiexec execution line in your PBS script to run IOT. For example, replace
mpiexec -np 100 a.out with the following lines:

set JOB_NUMBER=`echo $PBS_JOBID | awk -F. '{ print $1 }'`
 iot -m mpt -f cfg.icf -c '${ï»¿HOSTï»¿}':pfe22:`pwd`/a.out.collect.${ï»¿JOB_NUMBERï»¿}.ilz \
 mpiexec -np 100 a.out

This method will generate an ILZ file named a.out.collect.$.ilz.

Another option is to simply use:

iot -m mpt -f cfg.icf \
 mpiexec -np 100 a.out

This method will generate an ILZ file named iot.process_id.ilz.

TIP: When the -m option is enabled, the default value for -f is mpi_summary.icf, which will
be located automatically in the /nasa/IOT/latest/icf directory.

2.

For more information, see iot -h on the IOT Options and iot -M on the IOT Layers man pages.

Viewing the ILZ File

Once your ILZ file is generated, you can view the data with the Pulse graphical user interface
(GUI) using one of the following methods. Pulse will read in the data from the file and organize it

Using the IOT Toolkit for I/O and MPI Performance Analysis 29

for easy analysis in the GUI.

Run Pulse on Your Local System (Recommended)

Follow these steps to run Pulse on your local system.

Download Pulse.jar and the ILZ file:

your_local_system% scp pfe:/nasa/IOT/latest/pulse.d/Pulse.jar .
your_local_system% scp pfe:/path_to_ilz_file/filename.ilz .

1.

Run Pulse through Java:

your_local_system% java -jar Pulse.jar filename.ilz

2.

Note: Download the latest version of Pulse.jar from time to time, as enhancements may be
added.

Run Pulse from a PFE

Log into a PFE, load a Java module, and run Pulse:

pfe21% module load jvm/jrel.8.0_121
pfe21% pulse filename.ilz

TIPS:

Pulse will uncompress the ILZ file to 4-5 times its compressed size. If the uncompressed
file gets very large, Pulse may run out of memory. If this happens, you can try to
increase memory using the java -Xmx4g option, as follows:

% java -Xmx4g -jar Pulse.jar filename.ilz

•

While Pulse is reading the file, the filename in the GUI will appear in red text. You can
stop it before Pulse consumes too much memory by right-clicking the filename and
selecting Stop Reading.

•

Additional Documentation

IOT documentation provided by the vendor is available in the /nasa/IOT/Doc directory.

Using the IOT Toolkit for I/O and MPI Performance Analysis 30

Overview of Intel VTune Analysis

The Intel VTune Profiler is an analysis and tuning tool that provides predefined analysis
configurations to address performance questions.

This article provides basic information on several Intel VTune Profiler analysis types that
examine various aspects of performance and identify potential benefits for your application from
available hardware resources.

VTune Profiler Analysis Types

The following list provides a brief description of each analysis type that can be used with NAS
resources.

performance-snapshot
Get a quick snapshot of your application performance and identify next steps for deeper
analysis. This analysis type became available starting with VTune Profiler Version 2020
Update 2. The Intel Xeon Sandy Bridge processors are not supported for this analysis.

hotspots
Investigate call paths and find where your code is spending the most time; identify
opportunities to tune your algorithms. This analysis type is in the Vtune Profiler's
Algorithm analysis group.

threading
Discover how well your application is using parallelism to take advantage of all available
CPU cores. Best for visualizing thread parallelism on available cores, locating causes of
low concurrency, and identifying serial bottlenecks in your code. This analysis type is in
the Parallelism analysis group.

memory-consumption
Analyze memory consumption by your application, its distinct memory objects, and their
allocation stacks. This analysis type is in the Algorithm analysis group.

uarch-exploration
Analyze CPU microarchitecture bottlenecks affecting the performance of your
application. This analysis type is in the Microarchitecture analysis group.

memory-access
Measure a set of metrics to identify issues related to memory access. Best for
memory-bound applications to determine which level of the memory hierarchy is
impacting your performance by reviewing CPU cache and main memory usage, including
possible NUMA issues. This analysis type is in the Microarchitecture analysis group.

hpc-performance
Analyze performance aspects of compute-intensive applications, including CPU and GPU
utilization. Get information on OpenMP efficiency, memory access, and vectorization.
This analysis type is in the Parallelism analysis group.

io
Analyze utilization of IO subsystems, CPUs, and processor buses. This analysis type is in
the Input and Output analysis group.

VTune Profiler Collection Types

There are two collection types:

User-mode sampling and tracing collection.•
Hardware event-based sampling collection.•

Overview of Intel VTune Analysis 31

Each VTune analysis type uses one of the two collection types by default.

User-Mode Sampling and Tracing Collection

This collection method uses the operating system interrupts. No sampling drivers are needed.
Default resolution is 10 millisecond (ms). The method works for the Intel Xeon nodesâ��both
Pleiades front ends (PFEs) and computeâ��and the AMD Rome nodes.

Hardware Event-based Sampling (EBS) Collection

This collection method uses the counter overflow feature of the on-chip Performance Monitoring
Unit (PMU). Default resolution is 1 ms. The is enabled for the Intel Xeon compute nodes only; it
is not applicable to the Pleiades front-end nodes (for security reasons) or the AMD Rome
processors (for hardware reasons).

There are two ways to facilitate EBS:

Install and load the Intel sampling drivers•
Enable the Perf driverless collection, where the Linux Perf driver is used instead of the
Intel sampling drivers

•

Each method is described below. Both require administrator privilege to configure them.

Install and Load the Intel Sampling Drivers

Different VTune Profiler versions may need different versions of the sampling drivers. A change
in the kernel may result in the need to reinstall and reload the drivers. Here is one way to check
whether the VTune sampling drivers have been loaded on the system for a particular version of
VTune:

% <VTUNE_PROFILER_DIR>/sepdk/src insmod-sep -q

For example, running the command as shown below on a compute node will show that the
drivers have been loaded:

% /nasa/intel/Compiler/2021.4.0/vtune/2021.9.0/sepdk/src insmod-sep -q

Enable the Perf Driverless Collection

With this method, the Linux Perf driver is used instead of the Intel sampling drivers. The Intel
VTune Profiler can use this driverless mode if the following requirements are satisfied:

Access to core and uncore events. All hardware event-based collections in VTune Profiler
use core PMU events. Some of them, such as the Memory Access and IO analysis types,
also require access to uncore events that enable collecting metrics such as DRAM
bandwidth, QPI/UPI bandwidth, PCI bandwidth, and others.

•

Perf for Linux kernel 2.6.32 or later. PMU events are exposed by the Linux kernel through
/sys/bus/event_source/devices/cpu and /sys/bus/event_source/devices/uncore_* directories.

•

The value of /proc/sys/kernel/perf_event_paranid must be 0 or 1.•

See Intel Processor Events Reference to learn more about core and uncore events.

Overview of Intel VTune Analysis 32

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/intel-processor-events-reference.html

Compared to the Intel sampling drivers method, there are limitations to using the Perf driverless
collection mode. For example, in order to use Perf driverless collection mode with the
uarch-exploration and memory-access analysis types, a system administrator must set the
default limit of opened file descriptors (listed in the /etc/security/limits.conf file) to exceed 100
x number_of_logic_CPU_cores. More limitations are listed in the Intel documentation, Profiling
Hardware Without Intel Sampling Drivers.

Note: On HECC Intel Xeon compute nodes running the TOSS3 image, both EBS collection modes
are enabled for vtune/2021.9.

In all cases except for using the hotspots analysis type with stack collection, VTune Profiler uses
the Intel sampling drivers if they are loaded. To make the VTune Profiler use the driverless Perf
mode for sampling without stacks, create a custom analysis type and select the Enable
driverless collection option in the GUI, or set the knob value in the command line to
enable-driverless-collection=true as follows:

vtune -collect-with runsa -knob enable-driverless-collection=true \
-knob event-config=<event-list> <application>

For example,

-knob enable-driverless-collection=true -knob \
event-config=CPU_CLK_UNHALTED.CORE,CPU_CLK_UNHALTED.REF,INST_RETIRED.ANY

The enable-driverless-collection option is available starting with VTune 2019 Update 4.

Note: The command lines above is too long to be formatted as one line, so they are broken with
a backslash (\).

Readiness of Running Various Analysis Types

To check whether VTune Profiler is ready for use on a system, you can use the
vtune-self-checker.sh script, which can be found under <VTUNE_PROFILER_DIR>/bin64. This
script runs a subset of the available analysis types against a matrix multiply application, and
reports whether the analysis runs successfully. If EBS is used for the analysis, it also states
whether the Intel sampling drivers or the Perf driverless mode is used.

Using the VTune Profiler Command Line

We recommend using the latest version of VTune on HECC systems, vtune/2021.9:

module load vtune/2021.9

To learn more about various analysis types, use:

vtune -h collect

or

vtune -h collect name_of_analysis_type

To run the VTune self checker (to confirm whether the correct drivers are installed and the
system is set up properly):

vtune-self-checker.sh > output

Overview of Intel VTune Analysis 33

https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/configuration-recipes/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/configuration-recipes/profiling-hardware-without-sampling-drivers.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/custom-analysis.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/command-line-interface/command-line-interface-reference/knob.html

When using the HPE MPT libraries with VTune, set the MPI_SHEPHERD and MPI_USING_VTUNE
variables as follows.

Note: For some analyses, MPT may generate error message in your PBS output files stating that
additional variables (such as MPI_UNBUFFERED_STDIO) need to be set.

(bash)
export MPI_SHEPHERD=true
export MPI_USING_VTUNE=true

(csh)
setenv MPI_SHEPHERD true
setenv MPI_USING_VTUNE true

For an example of running an analysis type and viewing the results, see Finding Hotspots in
Your Code with the Intel VTune Command-Line Interface.

Summary Table

The information provided above was tested on NAS systems using vtune/2021.9 and is
summarized in the following table.

Analysis Type Additional Knobs Used Analysis Group
Sampling
Method

If EBS,
Which
Mode?

Unsupported
Processor

Types

performance-snapshot N/A EBS
Intel
Driver

Sandy Bridge,
Rome

hotspots Algorithm User-Mode N/A None

hotspots -knob sampling-mode=hw Algorithm EBS
Intel
Driver

Rome

hotspots
-knob sampling-mode=hw
-knob
enable-stack-collection=true

Algorithm EBS Perf1 Rome

threading Parallelism User-Mode N/A None

threading -knob sampling-and-waits=hw Parallelism EBS
Intel
Driver

Rome

threading
-knob sampling-and-waits=hw
-knob
enable-stack-collection=true

Parallelism EBS
Intel
Driver

Rome

memory-consumption Algorithm User-Mode N/A None

uarch-exploration Microarchitecture EBS
Intel
Driver

Haswell2,
Rome

memory-access Microarchitecture EBS
Intel
Driver

Rome

hpc-performance Parallelism EBS
Intel
Driver

Sandy
Bridge3, Rome

io Input and Output EBS
Intel
Driver

Rome

-collect-with runsa -knob event-config=<event-list> Custom Analysis EBS
Intel
Driver

Rome

Overview of Intel VTune Analysis 34

-collect-with runsa
-knob event-config=<event-list>
-knob
enable-driverless-collection=true

Custom Analysis EBS Perf Rome

1 Starting with VTune 2019 Update 4, hotspots with EBS and stacks uses the Perf driverless
mode by default even when the Intel sampling drivers are available.

2 No L2, L3, DRAM bound (in % of clockticks), memory bandwidth or memory latency available
for Haswell when hyperthreading is turned on.

3 Vectorization analysis is limited for Sandy Bridge. Only metrics based on binary static analysis
such as vector instruction set will be available.

Additional References

VTune Analysis Types•
Intel VTune Profiler User Guide•
Intel VTune Profiler Performance Analysis Cookbook•

Overview of Intel VTune Analysis 35

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-project/analysis-types.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top.html

Finding Hotspots in Your Code with the Intel VTune Command-Line
Interface

The Intel VTune Profiler (renamed from Amplifier starting with 2020.0 version) is an analysis and
tuning tool that provides predefined analysis configurations to address various performance
questions. Among them, the hotspots analysis type can help you to identify the most
time-consuming parts of your code and provide call stack information down to the source lines.

The hotspots analysis type allows two data collection methods: (1) user-mode sampling and
tracing collection, and (2) hardware event-based sampling collection. Both methods are
supported on all current Pleiades, Aitken, and Electra Intel processor types: Sandy Bridge, Ivy
Bridge, Haswell, Broadwell, Skylake, and Cascade Lake.

Note: For the AMD Rome nodes, the user-mode sampling and tracing collection is supported but
the hardware event-based sampling collection is not.

The instructions below apply to using the user-mode sampling and tracing collection type, with a
fixed sampling interval of 10 ms.

Setting Up to Run a Hotspots Analysis

Complete these steps to prepare for profiling your code:

Add the -g option to your usual set of compiler flags in order to generate a symbol table,
which is used by VTune during analysis. Keep the same optimization level that you
intend to run in production.

1.

For MPI applications, build the code with the latest version of MPT library, such as
mpi-hpe/mpt.2.25, as it will likely work better with Intel Vtune.

2.

Start a PBS interactive session or submit a PBS batch job.3.
Load a VTune module in the interactive PBS session or PBS script, as follows:

module load vtune/2021.9

4.

You can now run an analysis, as described in the next section.

Running a Hotspots Analysis

Run the vtune command line that is appropriate for your code, as listed below. Use the -collect
(or -c) option to run the hotspots collection and the -result-dir (or -r) option to specify a
directory.

Note: The vtune command replaces amplxe-cl, which was used prior to the 2020.0 version.

Running a Hotspots Analysis on Serial or OpenMP Code

To profile a serial or OpenMP application (for example):

vtune -collect hotspots -result-dir r000hs

Data collected by VTune for the a.out application are stored in the r000hs directory.

Finding Hotspots in Your Code with the Intel VTune Command-Line Interface 36

Running a Hotspots Analysis on Python Code

To profile a Python application:

vtune -collect hotspots -result-dir r000hs /full/path/to/python3 python_script

Data collected by VTune while running the Python script will be stored in the r000hs directory.

Note: See Additional Resources below for more information about Python code analysis.

Running a Hotspots Analysis on MPI Code Using HPE MPT

To profile an MPI application using HPE MPT:

setenv MPI_SHEPHERD true
setenv MPI_USING_VTUNE true
mpiexec -np XX vtune -collect hotspots -result-dir

Note: If your vtune run fails with MPT ERROR and a suggestion to set additional MPT environment
variables, for example MPI_UNBUFFERED_STDIO, follow the suggestion and try again.

At the end of the collection, VTune generates a summary report that is written by default to
stdout. The summary includes information such as the name of the compute host, operating
system, CPU, elapsed time, CPU time, and average CPU utilization.

Data collected by VTune are stored and organized with one directory per host. Within each
directory, data are further grouped into subdirectories by rank. As an example, for a 48-rank MPI
job running on two nodes with 24 ranks per node, VTune generates two directories,
r000hs.r587i0n0 and r000hs.r587i0n1, where each directory contains 24 subdirectories,
(data.[0-23]).

To reduce the amount of data collected, consider profiling a subset of the MPI ranks, instead of
all of them. For example, to profile only rank 0 of the 48-rank MPI job:

mpiexec -np 1 vtune -collect hotspots -result-dir r000hsÂ a.out : -np 47 a.out

Viewing Results with the VTune GUI

Once data are collected, view the results with the VTune graphical user interface (GUI),
vtune-gui. Since the Pleiades front-end systems (PFEs) do not have sufficient memory to run
vtune-gui, run it on a compute node as follows:

On a PFE, run echo $DISPLAY to find its setting (for example, pfe22:102.0).1.
On the same PFE window, start a VNC session.2.
On your desktop, use a VNC viewer (for example, TigerVNC) to connect to the PFE.3.
On the PFE (via the VNC viewer window), request a compute node either through an
interactive PBS session
(qsub -I -X) or a reservable front end (pbs_rfe).

4.

On the compute node, start vtune-gui with name of the result directory, for example,
r000hs.

compute_node% module load vtune/2021.9
compute_node% vtune-gui r000hs

5.

Finding Hotspots in Your Code with the Intel VTune Command-Line Interface 37

Generating a Report

You can also use the vtune command with the -report option to generate a report. There are
several ways to group data in a report, as follows:

To report time grouped by functions (in descending order) and print the results to stdout,
or to a specific output text file, such as output.txt:

vtune -report hotspots -r r000hs

or

vtune -report hotspots -r r000hs -report-output output

•

To report time grouped by source lines, in descending order:

vtune -report hotspots -r r000hs -group-by source-line

•

To report time grouped by module:

vtune -report hotspots -r r000hs -group-by module

•

You can also generate a report showing the differences between two result directories (such as
from two different ranks or two different runs), or select different types of data to display in a
report, as follows:

To report the differences between two result directories:

vtune -report hotspots -r r000hs -r r001hs

•

To display CPU time for call stacks:

vtune -report callstacks -r r000hs

•

To display a call tree and provide CPU time for each function:

vtune -report top-down -r r000hs

•

Additional Resources

See the following Intel VTune articles and documentation:

hotspots Command Line Analysis•
hotspots Analysis for CPU Usage Issues•
Python Code Analysis•

Finding Hotspots in Your Code with the Intel VTune Command-Line Interface 38

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/command-line-interface/running-command-line-analysis/run-basic-hotspots-analysis-command-line.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/algorithm-group/basic-hotspots-analysis.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/code-profiling-scenarios/python-code-analysis.html

Process/Thread Pinning

Instrumenting Your Fortran Code to Check Process/Thread Placement

Pinning, the binding of a process or thread to a specific core, can improve the performance of
your code.

You can insert the MPI function mpi_get_processor_name and the Linux C function sched_getcpu into
your source code to check process and/or thread placement. The MPI function
mpi_get_processor_name returns the hostname an MPI process is running on (to be used for MPI
and/or MPI+OpenMP codes only). The Linux C function sched_getcpu returns the processor
number the process/thread is running on.

If your source code is written in Fortran, you can use the C code mycpu.c, which allows your
Fortran code to call sched_getcpu. The next section describes how to use the mycpu.c code.

C Program mycpu.c

#include <utmpx.h>
int sched_getcpu();

int findmycpu_ ()
{
 int cpu;
 cpu = sched_getcpu();
 return cpu;
}

Compile mycpu.c as follows to produce the object file mycpu.o:

pfe21% module load comp-intel/2020.4.304
pfe21% icc -c mycpu.c

The following example demonstrates how to instrument an MPI+OpenMP source code with the
above functions. The added lines are highlighted.

 program your_program
 use omp_lib
...
 integer :: resultlen, tn, cpu
 integer, external :: findmycpu
 character (len=8) :: name

 call mpi_init(ierr)
 call mpi_comm_rank(mpi_comm_world, rank, ierr)
 call mpi_comm_size(mpi_comm_world, numprocs, ierr)
 call mpi_get_processor_name(name, resultlen, ierr)
!$omp parallel

 tn = omp_get_thread_num()
 cpu = findmycpu()
 write (6,*) 'rank ', rank, ' thread ', tn,
 & ' hostname ', name, ' cpu ', cpu
.....
!$omp end parallel
 call mpi_finalize(ierr)
 end

Compile your instrumented code as follows:

pfe21% module load comp-intel/2020.4.304
pfe21% module load mpi-hpe/mpt

Process/Thread Pinning 39

pfe21% ifort -o a.out -qopenmp mycpu.o your_program.f -lmpi

Sample PBS script

The following PBS script provides an example of running the hybrid MPI+OPenMP code across
two nodes, with 2 MPI processes per node and 4 OpenMP threads per process, and using the
mbind tool to pin the processes and threads.

#PBS -lselect=2:ncpus=28:mpiprocs=2:model=bro
#PBS -lwalltime=0:10:00

cd $PBS_O_WORKDIR

module load comp-intel/2020.4.304
module load mpi-hpe/mpt

mpiexec -np 4 mbind.x -cs -t4 -v ./a.out

Here is a sample output:

These 4 lines are generated by mbind only if you have included the -v option:
host: r627i4n1, ncpus: 56, rank: 0 (r0), nthreads: 4, bound to cpus: {0-9:3}
host: r627i4n1, ncpus: 56, rank: 1 (r1), nthreads: 4, bound to cpus: {14-23:3}
host: r627i4n8, ncpus: 56, rank: 2 (r0), nthreads: 4, bound to cpus: {0-9:3}
host: r627i4n8, ncpus: 56, rank: 3 (r1), nthreads: 4, bound to cpus: {14-23:3}

These lines are generated by your instrumented code:
rank 0 thread 3 hostname r627i4n1 cpu 0
rank 0 thread 3 hostname r627i4n1 cpu 3
rank 0 thread 3 hostname r627i4n1 cpu 6
rank 0 thread 3 hostname r627i4n1 cpu 9
rank 1 thread 3 hostname r627i4n1 cpu 14
rank 1 thread 3 hostname r627i4n1 cpu 17
rank 1 thread 3 hostname r627i4n1 cpu 20
rank 1 thread 3 hostname r627i4n1 cpu 23
rank 2 thread 3 hostname r627i4n8 cpu 0
rank 2 thread 3 hostname r627i4n8 cpu 3
rank 2 thread 3 hostname r627i4n8 cpu 6
rank 2 thread 3 hostname r627i4n8 cpu 9
rank 3 thread 3 hostname r627i4n8 cpu 14
rank 3 thread 3 hostname r627i4n8 cpu 17
rank 3 thread 3 hostname r627i4n8 cpu 20
rank 3 thread 3 hostname r627i4n8 cpu 23

Note: In your output, these lines may be listed in a different order.

Instrumenting Your Fortran Code to Check Process/Thread Placement 40

Using HPE MPT Environment Variables for Pinning

For MPI codes built with HPE's MPT libraries, one way to control pinning is to set certain MPT
memory placement environment variables. For an introduction to pinning at NAS, see
Process/Thread Pinning Overview.

MPT Environment Variables

Here are the MPT memory placement environment variables:

MPI_DSM_VERBOSE

Directs MPI to display a synopsis of the NUMA and host placement options being used at run
time to the standard error file.

Default: Not enabled

The setting of this environment variable is ignored if MPI_DSM_OFF is also set.

MPI_DSM_DISTRIBUTE

Activates NUMA job placement mode. This mode ensures that each MPI process gets a unique
CPU and physical memory on the node with which that CPU is associated. Currently, the CPUs
are chosen by simply starting at relative CPU 0 and incrementing until all MPI processes have
been forked.

Default: Enabled

WARNING: If the nodes used by your job are not fully populated with MPI processes, use
MPI_DSM_CPULIST, dplace, or omplace for pinning instead of MPI_DSM_DISTRIBUTE.
The MPI_DSM_DISTRIBUTE setting is ignored if MPI_DSM_CPULIST is also set, or if dplace or omplace are
used.

MPI_DSM_CPULIST

Specifies a list of CPUs on which to run an MPI application, excluding the shepherd process(es)
and mpirun. The number of CPUs specified should equal the number of MPI processes (excluding
the shepherd process) that will be used.

Syntax and examples for the list:

Use a comma and/or hyphen to provide a delineated list:

place MPI processes ranks 0-2 on CPUs 2-4
and ranks 3-5 on CPUs 6-8
setenv MPI_DSM_CPULIST "2-4,6-8"

•

Use a "/" and a stride length to specify CPU striding:

Place the MPI ranks 0 through 3 stridden
on CPUs 8, 10, 12, and 14
setenv MPI_DSM_CPULIST 8-15/2

•

Using HPE MPT Environment Variables for Pinning 41

Use a colon to separate CPU lists of multiple hosts:

Place the MPI processes 0 through 7 on the first host
on CPUs 8 through 15. Place MPI processes 8 through 15
on CPUs 16 to 23 on the second host.
setenv MPI_DSM_CPULIST 8-15:16-23

•

Use a colon followed by allhosts to indicate that the prior list pattern applies to all
subsequent hosts/executables:

Place the MPI processes onto CPUs 0, 2, 4, 6 on all hosts
setenv MPI_DSM_CPULIST 0-7/2:allhosts

•

Examples

An MPI job requesting 2 nodes on Pleiades and running 4 MPI processes per node will get the
following placements, depending on the environment variables set:

#PBS -lselect=2:ncpus=8:mpiprocs=4
module load <mpt_module>
setenv
cd $PBS_O_WORKDIR
mpiexec -np 8 ./a.out

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_DISTRIBUTE

MPI: DSM information
MPI: MPI_DSM_DISTRIBUTE enabled
grank lrank pinning node name cpuid
 0 0 yes r86i3n5 0
 1 1 yes r86i3n5 1
 2 2 yes r86i3n5 2
 3 3 yes r86i3n5 3
 4 0 yes r86i3n6 0
 5 1 yes r86i3n6 1
 6 2 yes r86i3n6 2
 7 3 yes r86i3n6 3

•

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6

MPI: WARNING MPI_DSM_CPULIST CPU placement spec list is too short.
MPI: MPI processes on host #1 and later will not be pinned.
MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r22i1n7 0
 1 1 yes r22i1n7 2
 2 2 yes r22i1n7 4
 3 3 yes r22i1n7 6
 4 0 no r22i1n8 0
 5 1 no r22i1n8 0
 6 2 no r22i1n8 0
 7 3 no r22i1n8 0

•

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6:0,2,4,6

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r13i2n12 0
 1 1 yes r13i2n12 2
 2 2 yes r13i2n12 4
 3 3 yes r13i2n12 6

•

Using HPE MPT Environment Variables for Pinning 42

 4 0 yes r13i3n7 0
 5 1 yes r13i3n7 2
 6 2 yes r13i3n7 4
 7 3 yes r13i3n7 6

setenv MPI_DSM_VERBOSE
setenv MPI_DSM_CPULIST 0,2,4,6:allhosts

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r13i2n12 0
 1 1 yes r13i2n12 2
 2 2 yes r13i2n12 4
 3 3 yes r13i2n12 6
 4 0 yes r13i3n7 0
 5 1 yes r13i3n7 2
 6 2 yes r13i3n7 4
 7 3 yes r13i3n7 6

•

Using HPE MPT Environment Variables for Pinning 43

Using the omplace Tool for Pinning

HPE's omplace is a wrapper script for dplace. It pins processes and threads for better performance
and provides an easier syntax than dplace for pinning processes and threads.

The omplace wrapper works with HPE MPT as well as with Intel MPI. In addition to pinning pure
MPI or pure OpenMP applications, omplace can also be used for pinning hybrid MPI/OpenMP
applications.

A few issues with omplace to keep in mind:

dplace and omplace do not work with Intel compiler versions 10.1.015 and 10.1.017. Use
the Intel compiler version 11.1 or later, instead

•

To avoid interference between dplace/omplace and Intel's thread affinity interface, set the
environment variable KMP_AFFINITY to disabled or set OMPLACE_AFFINITY_COMPAT to ON

•

The omplace script is part of HPE's MPT, and is located under the
/nasa/hpe/mpt/mpt_version_number/bin directory

•

Syntax

For OpenMP:
setenv OMP_NUM_THREADS nthreads
omplace [OPTIONS] program args...
or
omplace -nt nthreads [OPTIONS] program args...

For MPI:
mpiexec -np nranks omplace [OPTIONS] program args...

For MPI/OpenMP hybrid:
setenv OMP_NUM_THREADS nthreads
mpiexec -np nranks omplace [OPTIONS] program args...
or
mpiexec -np nranks omplace -nt nthreads [OPTIONS] program args...

Some useful omplace options are listed below:

WARNING: For omplace, a blank space is required between -c and cpulist. Without the space, the
job will fail. This is different from dplace.

-b basecpu

Specifies the starting CPU number for the effective CPU list.
-c cpulist

Specifies the effective CPU list. This is a comma-separated list of CPUs or CPU ranges.
-nt nthreads

Specifies the number of threads per MPI process. If this option is unspecified, it defaults
to the value set for the OMP_NUM_THREADS environment variable. If
OMP_NUM_THREADS is not set, then nthreads defaults to 1.

-v

Verbose option. Portions of the automatically generated placement file will be displayed.
-vv

Very verbose option. The automatically generated placement file will be displayed in its
entirety.

For information about additional options, see man omplace.

Examples

Using the omplace Tool for Pinning 44

For Pure OpenMP Codes Using the Intel OpenMP Library

Sample PBS script:

#PBS -lselect=1:ncpus=12:model=wes

module load comp-intel/2015.0.090
setenv KMP_AFFINITY disabled

omplace -c 0,3,6,9 -vv ./a.out

Sample placement information for this script is given in the application's stout file:

omplace: placement file /tmp/omplace.file.21891
 firsttask cpu=0
 thread oncpu=0 cpu=3-9:3 noplace=1 exact

The above placement output may not be easy to understand. A better way to check the
placement is to run the ps command on the running host while the job is still running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp > placement.out

Sample output of placement.out

PSR COMMAND TIME PID PPID LWP
 0 openmp1 00:00:02 31918 31855 31918
 19 openmp1 00:00:00 31918 31855 31919
 3 openmp1 00:00:02 31918 31855 31920
 6 openmp1 00:00:02 31918 31855 31921
 9 openmp1 00:00:02 31918 31855 31922

Note that Intel OpenMP jobs use an extra thread that is unknown to the user, and does not need
to be placed. In the above example, this extra thread is running on logical core number 19.

For Pure MPI Codes Using HPE MPT

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/2015.0.090
module load mpi-hpe/mpt

#Setting MPI_DSM_VERBOSE allows the placement information
#to be printed to the PBS stderr file

setenv MPI_DSM_VERBOSE

mpiexec -np 8 omplace -c 0,3,6,9 ./a.out

Sample placement information for this script is shown in the PBS stderr file:

MPI: DSM information
MPI: using dplace
grank lrank pinning node name cpuid
 0 0 yes r144i3n12 0
 1 1 yes r144i3n12 3
 2 2 yes r144i3n12 6
 3 3 yes r144i3n12 9
 4 0 yes r145i2n3 0
 5 1 yes r145i2n3 3
 6 2 yes r145i2n3 6
 7 3 yes r145i2n3 9

Using the omplace Tool for Pinning 45

In this example, the four processes on each node are evenly distributed to the two sockets
(CPUs 0 and 3 are on the first socket while CPUs 6 and 9 on the second socket) to minimize
contention. If omplace had not been used, then placement would follow the rules of the
environment variable OMP_DSM_DISTRIBUTE, and all four processes would have been placed on
the first socket -- likely leading to more contention.

For MPI/OpenMP Hybrid Codes Using HPE MPT and Intel OpenMP

Proper placement is more critical for MPI/OpenMP hybrid codes than for pure MPI or pure
OpenMP codes. The following example demonstrates the situation when no placement
instruction is provided and the OpenMP threads for each MPI process are stepping on one
another which likely would lead to very bad performance.

Sample PBS script without pinning:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/2015.0.090
module load mpi-hpe/mpt
setenv OMP_NUM_THREADS 2

mpiexec -np 8 ./a.out

There are two problems with the resulting placement shown in the example above. First, you
can see that the first four MPI processes on each node are placed on four cores (0,1,2,3) of the
same socket, which will likely lead to more contention compared to when they are distributed
between the two sockets.

MPI: MPI_DSM_DISTRIBUTE enabled
grank lrank pinning node name cpuid
 0 0 yes r212i0n10 0
 1 1 yes r212i0n10 1
 2 2 yes r212i0n10 2
 3 3 yes r212i0n10 3
 4 0 yes r212i0n11 0
 5 1 yes r212i0n11 1
 6 2 yes r212i0n11 2
 7 3 yes r212i0n11 3

The second problem is that, as demonstrated with the ps command below, the OpenMP threads
are also placed on the same core where the associated MPI process is running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp

PSR COMMAND TIME PID PPID LWP
 0 a.out 00:00:02 4098 4092 4098
 0 a.out 00:00:02 4098 4092 4108
 0 a.out 00:00:02 4098 4092 4110
 1 a.out 00:00:03 4099 4092 4099
 1 a.out 00:00:03 4099 4092 4106
 2 a.out 00:00:03 4100 4092 4100
 2 a.out 00:00:03 4100 4092 4109
 3 a.out 00:00:03 4101 4092 4101
 3 a.out 00:00:03 4101 4092 4107

Sample PBS script demonstrating proper placement:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load mpi-hpe/mpt
module load comp-intel/2015.0.090

setenv MPI_DSM_VERBOSE
setenv OMP_NUM_THREADS 2
setenv KMP_AFFINITY disabled

Using the omplace Tool for Pinning 46

cd $PBS_O_WORKDIR

#the following two lines will result in identical placement

mpiexec -np 8 omplace -nt 2 -c 0,1,3,4,6,7,9,10 -vv ./a.out
#mpiexec -np 8 omplace -nt 2 -c 0-10:bs=2+st=3 -vv ./a.out

Shown in the PBS stderr file, the 4 MPI processes on each node are properly distributed on the
two sockets with processes 0 and 1 on CPUs 0 and 3 (first socket) and processes 2 and 3 on
CPUs 6 and 9 (second socket).

MPI: DSM information
MPI: using dplace
grank lrank pinning node name cpuid
 0 0 yes r212i0n10 0
 1 1 yes r212i0n10 3
 2 2 yes r212i0n10 6
 3 3 yes r212i0n10 9
 4 0 yes r212i0n11 0
 5 1 yes r212i0n11 3
 6 2 yes r212i0n11 6
 7 3 yes r212i0n11 9

In the PBS stout file, it shows the placement of the two OpenMP threads for each MPI process:

omplace: This is an HPE MPI program.
omplace: placement file /tmp/omplace.file.6454
 fork skip=0 exact cpu=0-10:3
 thread oncpu=0 cpu=1 noplace=1 exact
 thread oncpu=3 cpu=4 noplace=1 exact
 thread oncpu=6 cpu=7 noplace=1 exact
 thread oncpu=9 cpu=10 noplace=1 exact
omplace: This is an HPE MPI program.
omplace: placement file /tmp/omplace.file.22771
 fork skip=0 exact cpu=0-10:3
 thread oncpu=0 cpu=1 noplace=1 exact
 thread oncpu=3 cpu=4 noplace=1 exact
 thread oncpu=6 cpu=7 noplace=1 exact
 thread oncpu=9 cpu=10 noplace=1 exact

To get a better picture of how the OpenMP threads are placed, using the following ps command:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp

PSR COMMAND TIME PID PPID LWP
 0 a.out 00:00:06 4436 4435 4436
 1 a.out 00:00:03 4436 4435 4447
 1 a.out 00:00:03 4436 4435 4448
 3 a.out 00:00:06 4437 4435 4437
 4 a.out 00:00:05 4437 4435 4446
 6 a.out 00:00:06 4438 4435 4438
 7 a.out 00:00:05 4438 4435 4444
 9 a.out 00:00:06 4439 4435 4439
 10 a.out 00:00:05 4439 4435 4445

Using the omplace Tool for Pinning 47

Using Intel OpenMP Thread Affinity for Pinning

UPDATE IN PROGRESS: This article is being updated to support Skylake and Cascade Lake.
The Intel compiler's OpenMP runtime library has the ability to bind OpenMP threads to physical
processing units. Depending on the system topology, application, and operating system, thread
affinity can have a dramatic effect on code performance. We recommend two approaches for
using the Intel OpenMP thread affinity capability.

Using the KMP_AFFINITY Environment Variable

The thread affinity interface is controlled using the KMP_AFFINITY environment variable.

Syntax

For csh and tcsh:

setenv KMP_AFFINITY [<modifier>,...]<type>[,<permute>][,<offset>]

For sh, bash, and ksh:

export KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

Using the Compiler Flag -par-affinity Compiler Option

Starting with the Intel compiler version 11.1, thread affinity can be specified through the
compiler option -par-affinity. The use of -openmp or -parallel is required in order for this option
to take effect. This option overrides the environment variable when both are specified. See man
ifort for more information.

Note: Starting with comp-intel/2015.0.090, -openmp is deprecated and has been replaced with
-qopenmp.

Syntax

-par-affinity=[<modifier>,...]<type>[,<permute>][,<offset>]

Possible Values for type

For both of the recommended approaches, the only required argument is type, which indicates
the type of thread affinity to use. Descriptions of all of the possible arguments (type, modifier,
permute, and offset) can be found in man ifort.

Recommendation: Use Intel compiler versions 11.1 and later, as some of the affinity methods
described below are not supported in earlier versions.

Possible values for type are:

type = none (default)
Does not bind OpenMP threads to particular thread contexts; however, if the operating
system supports affinity, the compiler still uses the OpenMP thread affinity interface to

Using Intel OpenMP Thread Affinity for Pinning 48

determine machine topology. Specify KMP_AFFINITY=verbose,none to list a machine topology
map.

type = disabled
Specifying disabled completely disables the thread affinity interfaces. This forces the
OpenMP runtime library to behave as if the affinity interface was not supported by the
operating system. This includes implementations of the low-level API interfaces such as
kmp_set_affinity and kmp_get_affinity that have no effect and will return a nonzero error
code.

Additional information from Intel:

"The thread affinity type of KMP_AFFINITY environment variable defaults to none
(KMP_AFFINITY=none). The behavior for KMP_AFFINITY=none was changed in 10.1.015 or later, and in
all 11.x compilers, such that the initialization thread creates a "full mask" of all the threads on
the machine, and every thread binds to this mask at startup time. It was subsequently found
that this change may interfere with other platform affinity mechanism, for example, dplace() on
Altix machines. To resolve this issue, a new affinity type disabled was introduced in compiler
10.1.018, and in all 11.x compilers (KMP_AFFINITY=disabled). Setting KMP_AFFINITY=disabled will
prevent the runtime library from making any affinity-related system calls."

type = compact
Specifying compact causes the threads to be placed as close together as possible. For
example, in a topology map, the nearer a core is to the root, the more significance the
core has when sorting the threads.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY=compact,verbose

for csh, tcsh
setenv KMP_AFFINITY compact,verbose

type = scatter
Specifying scatter distributes the threads as evenly as possible across the entire system.
Scatter is the opposite of compact.

Note: For most OpenMP codes, type=scatter should provide the best performance, as it
minimizes cache and memory bandwidth contention for all processor models.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY=scatter,verbose

for csh, tcsh
setenv KMP_AFFINITY scatter,verbose

type = explicit
Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been
explicitly specified by using the proclist=modifier, which is required for this affinity type.

Usage example:

for sh, ksh, bash
export KMP_AFFINITY="explicit,proclist=[0,1,4,5],verbose"

Using Intel OpenMP Thread Affinity for Pinning 49

for csh, tcsh
setenv KMP_AFFINITY "explicit,proclist=[0,1,4,5],verbose"

For nodes that support hyperthreading, you can use the granularity modifier to specify whether
to pin OpenMP threads to physical cores using granularity=core (the default) or pin to logical
cores using granularity=fine or granularity=thread for the compact and scatter types.

Examples

The following examples illustrate the thread placement of an OpenMP job with four threads on
various platforms with different thread affinity methods. The variable OMP_NUM_THREADS is set
to 4:

for sh, ksh, bash
export OMP_NUM_THREADS=4

for csh, tcsh
setenv OMP_NUM_THREADS 4

The use of the verbose modifier is recommended, as it provides an output with the placement.

Sandy Bridge (Pleiades)

As seen in the configuration diagram of a Sandy Bridge node, each set of eight physical cores in
a socket share the same L3 cache.

Four threads running on 1 node (16 physical cores and 32 logical cores due to hyperthreading)
of Sandy Bridge will get the following thread placement:

kb285_sandybridge_table.png

Ivy Bridge (Pleiades)

As seen in the configuration diagram of an Ivy Bridge node, each set of ten physical cores in a
socket share the same L3 cache.

Four threads running on 1 node (20 physical cores and 40 logical cores due to hyperthreading)
of Ivy Bridge will get the following thread placement:

IvyBridgeTableThumb.png

Haswell (Pleiades)

Using Intel OpenMP Thread Affinity for Pinning 50

https://www.nas.nasa.gov/hecc/support/kb_upload/image/kb285_sandybridge_1030881.png
https://www.nas.nasa.gov/hecc/support/kb_upload/image/IvyBridgeTableFull.png

As seen in the configuration diagram of a Haswell node, each set of 12 physical cores in a
socket share the same L3 cache.

Four threads running on 1 node (24 physical cores and 48 logical cores due to hyperthreading)
of Haswell will get the following thread placement:

HaswellTableThumb_1.png

Broadwell (Pleiades and Electra)

As seen in the configuration diagram of a Broadwell node, each set of 14 physical cores in a
socket share the same L3 cache.

Four threads running on 1 node (28 physical cores and 56 logical cores due to hyperthreading)
of Broadwell will get the following thread placement:

BroadwellTableThumb_1_1.png

Using Intel OpenMP Thread Affinity for Pinning 51

https://www.nas.nasa.gov/hecc/support/kb_upload/image/HaswellTableFull_1.png
https://www.nas.nasa.gov/hecc/support/kb_upload/image/BroadwellTableFull_1.png

Process/Thread Pinning Overview

Pinning, the binding of a process or thread to a specific core, can improve the performance of
your code by increasing the percentage of local memory accesses.

Once your code runs and produces correct results on a system, the next step is performance
improvement. For a code that uses multiple cores, the placement of processes and/or threads
can play a significant role in performance.

Given a set of processor cores in a PBS job, the Linux kernel usually does a reasonably good job
of mapping processes/threads to physical cores, although the kernel may also migrate
processes/threads. Some OpenMP runtime libraries and MPI libraries may also perform certain
placements by default. In cases where the placements by the kernel or the MPI or OpenMP
libraries are not optimal, you can try several methods to control the placement in order to
improve performance of your code. Using the same placement from run to run also has the
added benefit of reducing runtime variability.

Pay attention to maximizing data locality while minimizing latency and resource contention, and
have a clear understanding of the characteristics of your own code and the machine that the
code is running on.

Characteristics of NAS Systems

NAS provides two distinctly different types of systems: Pleiades, Aitken, and Electra are cluster
systems, and Endeavour is a global shared-memory system. Each type is described in this
section.

Pleiades, Aitken, and Electra

On Pleiades, Aitken, and Electra, memory on each node is accessible and shared only by the
processes and threads running on that node. Pleiades is a cluster system consisting of different
processor types: Sandy Bridge, Ivy Bridge, Haswell, and Broadwell. Electra is a cluster system
that consists of Broadwell and Skylake nodes, and Aitken is a cluster system that consists of
Cascade Lake and AMD Rome nodes.

Each node contains two sockets, with a symmetric memory system inside each socket. These
nodes are considered non-uniform memory access (NUMA) systems, and memory is accessed
across the two sockets through the inter-socket interconnect. So, for optimal performance, data
locality should not be overlooked on these processor types.

However, compared to a global shared-memory NUMA system such as Endeavour, data locality
is less of a concern on the cluster systems. Rather, minimizing latency and resource contention
will be the main focus when pinning processes/threads on these systems.

For more information on Pleiades, Aitken, and Electra, see the following articles:

Pleiades Configuration Details•
Aitken Configuration Details•
Electra Configuration Details•

Endeavour

Process/Thread Pinning Overview 52

Endeavour comprises two hosts. Each host is a NUMA system that contains 32 sockets with a
total of 896 cores. A process/thread can access the local memory on its socket, remote memory
across sockets within the same chassis through the Ultra Path Interconnnect, and remote
memory across chassis through the HPE Superdome Flex ASICs, with varying latencies. So, data
locality is critical for achieving good performance on Endeavour.

Note: When developing an application, we recommend that you initialize data in parallel so that
each processor core initializes the data it is likely to access later for calculation.

For more information, see Endeavour Configuration Details.

Methods for Process/Thread Pinning

Several pinning approaches for OpenMP, MPI and MPI+OpenMP hybrid applications are listed
below. We recommend using the Intel compiler (and its runtime library) and the HPE MPT
software on NAS systems, so most of the approaches pertain specifically to them. You can also
use the mbind tool for multiple OpenMP libraries and MPI environments.

OpenMP codes

Using Intel OpenMP Thread Affinity for Pinning•
Using the dplace Tool for Pinning•
Using the omplace Tool for Pinning•
Using the mbind Tool for Pinning•

MPI codes

Setting HPE MPT Environment Variables•

Using the omplace Tool for Pinniing•
Using the mbind Tool for Pinning•

MPI+OpenMP hybrid codes

Using the omplace Tool for Pinning•
Using the mbind Tool for Pinning•

Checking Process/Thread Placement

Each of the approaches listed above provides some verbose capability to print out the tool's
placement results. In addition, you can check the placement using the following approaches.

Use the ps Command

ps -C executable_name -L -opsr,comm,time,pid,ppid,lwp

In the generated output, use the core ID under the PSR column, the process ID under the PID
column, and the thread ID under the LWP column to find where the processes and/or threads
are placed on the cores.

Process/Thread Pinning Overview 53

Note: The ps command provides a snapshot of the placement at that specific time. You may
need to monitor the placement from time to time to make sure that the processes/threads do
not migrate.

Instrument your code to get placement information

Call the mpi_get_processor_name function to get the name of the processor an MPI process
is running on

•

Call the Linux C function sched_getcpu() to get the processor number that the process or
thread is running on

•

For more information, see Instrumenting your Fortran Code to Check Process/Thread Placement.

Process/Thread Pinning Overview 54

Using the dplace Tool for Pinning

The dplace tool binds processes/threads to specific processor cores to improve your code
performance. For an introduction to pinning at NAS, see Process/Thread Pinning Overview.

Once pinned, the processes/threads do not migrate. This can improve the performance of your
code by increasing the percentage of local memory accesses.

dplace invokes a kernel module to create a job placement container consisting of all (or a subset
of) the CPUs of the cpuset. In the current dplace version 2, an LD_PRELOAD library (libdplace.so)
is used to intercept calls to the functions fork(), exec(), and pthread_create() to place tasks that
are being created. Note that tasks created internal to glib are not intercepted by the preload
library. These tasks will not be placed. If no placement file is being used, then the dplace process
is placed in the job placement container and (by default) is bound to the first CPU of the cpuset
associated with the container.

Syntax

dplace [-e] [-c cpu_numbers] [-s skip_count] [-n process_name] \
 [-x skip_mask] [-r [l|b|t]] [-o log_file] [-v 1|2] \
 command [command-args]
dplace [-p placement_file] [-o log_file] command [mpiexec -np4 a.out]
dplace [-q] [-qq] [-qqq]

As illustrated above, dplace "execs" command (in this case, without its mpiexec arguments),
which executes within this placement container and continues to be bound to the first CPU of
the container. As the command forks child processes, they inherit the container and are bound
to the next available CPU of the container.

If a placement file is being used, then the dplace process is not placed at the time the job
placement container is created. Instead, placement occurs as processes are forked and
executed.

Options for dplace

Explanations for some of the options are provided below. For additional information, see man
dplace.

-e and -c cpu_numbers

-e determines exact placement. As processes are created, they are bound to CPUs in the exact
order specified in the CPU list. CPU numbers may appear multiple times in the list.

A CPU value of "x" indicates that binding should not be done for that process. If the end of the
list is reached, binding starts over again at the beginning of the list.

-c cpu_numbers specifies a list of CPUs, optionally strided CPU ranges, or a striding pattern. For
example:

-c 1•
-c 2-4 (equivalent to -c 2,3,4)•
-c 12-8 (equivalent to -c 12,11,10,9,8)•
-c 1,4-8,3•

Using the dplace Tool for Pinning 55

-c 2-8:3 (equivalent to -c 2,5,8)•
-c CS•
-c BT•

Note: CPU numbers are not physical CPU numbers. They are logical CPU numbers that are
relative to the CPUs that are in the allowed set, as specified by the current cpuset.

A CPU value of "x" (or *), in the argument list for the -c option, indicates that binding should not
be done for that process. The value "x" should be used only if the -e option is also used.

Note that CPU numbers start at 0.

For striding patterns, any subset of the characters (B)lade, (S)ocket, (C)ore, (T)hread may be
used; their ordering specifies the nesting of the iteration. For example, SC means to iterate all
the cores in a socket before moving to the next CPU socket, while CB means to pin to the first
core of each blade, then the second core of every blade, and so on.

For best results, use the -e option when using stride patterns. If the -c option is not specified, all
CPUs of the current cpuset are available. The command itself (which is "execed" by dplace) is
the first process to be placed by the -c cpu_numbers.

Without the -e option, the order of numbers for the -c option is not important.

-x skip_mask

Provides the ability to skip placement of processes. The skip_mask argument is a bitmask.
If bit N of skip_mask is set, then the N+1th process that is forked is not placed. For
example, setting the mask to 6 prevents the second and third processes from being
placed. The first process (the process named by the command) will be assigned to the
first CPU. The second and third processes are not placed. The fourth process is assigned
to the second CPU, and so on. This option is useful for certain classes of threaded
applications that spawn a few helper processes that typically do not use much CPU time.

-s skip_count

Skips the first skip_count processes before starting to place processes onto CPUs. This
option is useful if the first skip_count processes are "shepherd" processes used only for
launching the application. If skip_count is not specified, a default value of 0 is used.

-q

Lists the global count of the number of active processes that have been placed (by
dplace) on each CPU in the current cpuset. Note that CPU numbers are logical CPU
numbers within the cpuset, not physical CPU numbers. If specified twice, lists the current
dplace jobs that are running. If specified three times, lists the current dplace jobs and the
tasks that are in each job.

-o log_file

Writes a trace file to log_file that describes the placement actions that were made for
each fork, exec, etc. Each line contains a time-stamp, process id:thread number, CPU
that task was executing on, taskname and placement action. Works with version 2 only.

Examples of dplace Usage

For OpenMP Codes

#PBS -lselect=1:ncpus=8

#With Intel compiler versions 10.1.015 and later,
#you need to set KMP_AFFINITY to disabled
#to avoid the interference between dplace and
#Intel's thread affinity interface.

Using the dplace Tool for Pinning 56

setenv KMP_AFFINITY disabled

#The -x2 option provides a skip map of 010 (binary 2) to
#specify that the 2nd thread should not be bound. This is
#because under the new kernels, the master thread (first thread)
#will fork off one monitor thread (2nd thread) which does
#not need to be pinned.

#On Pleiades, if the number of threads is less than
#the number of cores, choose how you want
#to place the threads carefully. For example,
#the following placement is good on Harpertown
#but not good on other Pleiades processor types:

dplace -x2 -c 2,1,4,5 ./a.out

To check the thread placement, you can add the -o option to create a log:

dplace -x2 -c 2,1,4,5 -o log_file ./a.out

Or use the following command on the running host while the job is still running:

ps -C a.out -L -opsr,comm,time,pid,ppid,lwp > placement.out

Sample Output of log_file

timestamp process:thread cpu taskname| placement action
15:32:42.196786 31044 1 dplace | exec ./openmp1, ncpu 1
15:32:42.210628 31044:0 1 a.out | load, cpu 1
15:32:42.211785 31044:0 1 a.out | pthread_create thread_number 1, ncpu -1
15:32:42.211850 31044:1 - a.out | new_thread
15:32:42.212223 31044:0 1 a.out | pthread_create thread_number 2, ncpu 2
15:32:42.212298 31044:2 2 a.out | new_thread
15:32:42.212630 31044:0 1 a.out | pthread_create thread_number 3, ncpu 4
15:32:42.212717 31044:3 4 a.out | new_thread
15:32:42.213082 31044:0 1 a.out | pthread_create thread_number 4, ncpu 5
15:32:42.213167 31044:4 5 a.out | new_thread
15:32:54.709509 31044:0 1 a.out | exit

Sample Output of placement.out

PSR COMMAND TIME PID PPID LWP
 1 a.out 00:00:02 31044 31039 31044
 0 a.out 00:00:00 31044 31039 31046
 2 a.out 00:00:02 31044 31039 31047
 4 a.out 00:00:01 31044 31039 31048
 5 a.out 00:00:01 31044 31039 31049

Note: Intel OpenMP jobs use an extra thread that is unknown to the user and it does not need to
be placed. In the above example, this extra thread (31046) is running on core number 0.

For MPI Codes Built with HPE's MPT Library

With HPE's MPT, only 1 shepherd process is created for the entire pool of MPI processes, and the
proper way of pinning using dplace is to skip the shepherd process.

Here is an example for Endeavour:

#PBS -l ncpus=8
....

Using the dplace Tool for Pinning 57

 mpiexec -np 8 dplace -s1 -c 0-7 ./a.out

On Pleiades, if the number of processes in each node is less than the number of cores in that
node, choose how you want to place the processes carefully. For example, the following
placement works well on Harpertown nodes, but not on other Pleiades processor types:

#PBS -l select=2:ncpus=8:mpiprocs=4 ... mpiexec -np 8 dplace -s1 -c 2,4,1,5 ./a.out

To check the placement, you can set MPI_DSM_VERBOSE, which prints the placement in the PBS
stderr file:

#PBS -l select=2:ncpus=8:mpiprocs=4
...
setenv MPI_DSM_VERBOSE
mpiexec -np 8 dplace -s1 -c 2,4,1,5 ./a.out

Output in PBS stderr File

MPI: DSM information
grank lrank pinning node name cpuid
 0 0 yes r75i2n13 1
 1 1 yes r75i2n13 2
 2 2 yes r75i2n13 4
 3 3 yes r75i2n13 5
 4 0 yes r87i2n6 1
 5 1 yes r87i2n6 2
 6 2 yes r87i2n6 4
 7 3 yes r87i2n6 5

If you use the -o log_file flag of dplace, the CPUs where the processes/threads are placed will be
printed, but the node names are not printed.

#PBS -l select=2:ncpus=8:mpiprocs=4
....
mpiexec -np 8 dplace -s1 -c 2,4,1,5 -o log_file ./a.out

Output in log_file

timestamp process:thread cpu taskname | placement action
15:16:35.848646 19807 - dplace | exec ./new_pi, ncpu -1
15:16:35.877584 19807:0 - a.out | load, cpu -1
15:16:35.878256 19807:0 - a.out | fork -> pid 19810, ncpu 1
15:16:35.879496 19807:0 - a.out | fork -> pid 19811, ncpu 2
15:16:35.880053 22665:0 - a.out | fork -> pid 22672, ncpu 2
15:16:35.880628 19807:0 - a.out | fork -> pid 19812, ncpu 4
15:16:35.881283 22665:0 - a.out | fork -> pid 22673, ncpu 4
15:16:35.882536 22665:0 - a.out | fork -> pid 22674, ncpu 5
15:16:35.881960 19807:0 - a.out | fork -> pid 19813, ncpu 5
15:16:57.258113 19810:0 1 a.out | exit
15:16:57.258116 19813:0 5 a.out | exit
15:16:57.258215 19811:0 2 a.out | exit
15:16:57.258272 19812:0 4 a.out | exit
15:16:57.260458 22672:0 2 a.out | exit
15:16:57.260601 22673:0 4 a.out | exit
15:16:57.260680 22674:0 5 a.out | exit
15:16:57.260675 22671:0 1 a.out | exit

For MPI Codes Built with MVAPICH2 Library

Using the dplace Tool for Pinning 58

With MVAPICH2, 1 shepherd process is created for each MPI process. You can use ps -L -u
your_userid on the running node to see these processes. To properly pin MPI processes using
dplace, you cannot skip the shepherd processes and must use the following:

mpiexec -np 4 dplace -c2,4,1,5 ./a.out

Using the dplace Tool for Pinning 59

Using the mbind Tool for Pinning

The mbind utility is a "one-stop" tool for binding processes and threads to CPUs. It can also be
used to track memory usage. The utility, developed at NAS, works for for MPI, OpenMP, and
hybrid applications, and is available in the /u/scicon/tools/bin directory on Pleiades.

Recommendation: Add /u/scicon/tools/bin to the PATH environment variable in your startup
configuration file to avoid having to include the entire path in the command line.

One of the benefits of mbind is that it relieves you from having to learn the complexity of each
individual pinning approach for associated MPI or OpenMP libraries. It provides a uniform usage
model that works for multiple MPI and OpenMP environments.

Currently supported MPI and OpenMP libraries are listed below.

MPI:

HPE-MPT•
MVAPICH2•
INTEL-MPI•
OPEN-MPI (including Mellanox HPC-X MPI)•
MPICH•

Note: When using mbind with HPE-MPT, it is highly recommended that you use MPT 2.17r13, 2.21
or a later version in order to take full advantage of mbind capabilities.

OpenMP:

Intel OpenMP runtime library•
GNU OpenMP library•
PGI runtime library•
Oracle Developer Studio thread library•

Starting with version 1.7, the use of mbind is no longer limited to cases where the same set of
CPU lists is used for all processor nodes. However, as in previous versions, the same number of
threads must be used for all processes.

WARNING: The mbind tool might not work properly when used together with other performance
tools.

Syntax

#For OpenMP:
mbind.x [-options] program [args]

#For MPI or MPI+OpenMP hybrid which supports mpiexec:
mpiexec -np nranks mbind.x [-options] program [args]

To find information about all available options, run the command mbind.x -help.

Here are a few recommended mbind options:

-cs, -cp, -cc;
or -ccpulist

-cs for spread (default), -cp for compact, -cc for cyclic; -ccpulist for process ranks (for
example, -c0,3,6,9). CPU numbers in the cpulist are relative within a cpuset, if present.

Using the mbind Tool for Pinning 60

Note that the -cs option will distribute the processes and threads among the physical
cores to minimize various resource contentions, and is usually the best choice for
placement.

-t[n]

Number of threads per process. The default value is given by the OMP_NUM_THREADS
environment variable; this option overrides the value specified by OMP_NUM_THREADS.

-gm[n]

Print memory usage information. This option is for printing memory usage of each
process at the end of a run. Optional value [n] can be used to select one of the memory
usage types: 0=default, 1=VmHWM, 2=VmRSS, 3=WRSS. Recognized symbolic values for [n]:
"hwm", "rss", or "wrss". For default, environment variable GM_TYPE may be used to select
the memory usage type:

VmHWM - high water mark◊
VmRSS - resident memory size◊
WRSS - weighted memory usage (if available; else, same as VmRSS)◊

-gmc[s:n]

Print memory usage every [s] seconds for [n] times. The -gmc option indicates continuous
printing of memory usage at a default interval of 5 seconds. Use additional option [s:n] to
control the interval length [s] and the number of printing times [n]. Environment variable
GM_TIMER may also be used to set the [s:n] value.

-gmr[list]

Print memory usage for selected ranks in the list. This option controls the subset of ranks
for memory usage to print. [list] is a comma-separated group of numbers with possible
range.

-l

Print node information. This option prints a quick summary of node information by calling
the clist.x utility.

-v[n]

Verbose flag; Option -v or -v1 prints the process/thread-CPU binding information. With [n]
greater than 1, the option prints additional debugging information. [n] controls the level
of details. Default is n=0 (OFF).

Examples

Print a Processor Node Summary to Help Determine Proper Process or
Thread Pinning

In your PBS script, add the following to print the summary:

#PBS -lselect=...:model=bro

mbind.x -l

...

In the sample output below for a Broadwell node, look for the listing under column CPUs(SMTs).
CPUs listed in the same row are located in the same socket and share the same last level cache,
as shown in this configuration diagram.

Host Name : r601i0n3
Processor Model : Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
Processor Speed : 1600 MHz (max 2401 MHz)
Level 1 Cache (D) : 32 KB
Level 1 Cache (I) : 32 KB
Level 2 Cache (U) : 256 KB
Level 3 Cache (U) : 35840 KB (shared by 14 cores)
SMP Node Memory : 125.0 GB (122.3 GB free, 2 mem nodes)

Number of Sockets : 2

Using the mbind Tool for Pinning 61

Number of L3 Caches : 2
Number of Cores : 28
Number of SMTs/Core : 2
Number of CPUs : 56

Socket Cache Cores CPUs(SMTs)
0 0 0-6,8-14 (0,28)(1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)
 (9,37)(10,38)(11,39)(12,40)(13,41)
1 0 0-6,8-14 (14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)
 (22,50)(23,51)(24,52)(25,53)(26,54)(27,55)

For Pure OpenMP Codes Using Intel OpenMP Library

Sample PBS script:

#PBS -l select=1:ncpus=28:model=bro
#PBS -l walltime=0:5:0

module load comp-intel

setenv OMP_NUM_THREADS 4
cd $PBS_O_WORKDIR

mbind.x -cs -t4 -v ./a.out
#or simply:
#mbind.x -v ./a.out

The four OpenMP threads are spread (with the -cs option) among four physical cores in a node
(two on each socket), as shown in the application's stdout:

host: r635i7n14, ncpus: 56, nthreads: 4, bound to cpus: {0,1,14,15}
OMP: Warning #181: GOMP_CPU_AFFINITY: ignored because KMP_AFFINITY has been defined

The proper placement is further demonstrated in the output of the ps command below:

r635i7n14% ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 0 a.out 00:02:06 37243 36771 37243
 1 a.out 00:02:34 37243 36771 37244
 14 a.out 00:01:47 37243 36771 37245
 15 a.out 00:01:23 37243 36771 37246

Note: If you use older versions of Intel OpenMP via older versions of Intel compiler modules
(comp-intel/2016.181 or earlier) during runtime, the ps output will show an extra thread that
does not do any work, and therefore does not accumulate any time. Since this extra thread will
not interfere with the other threads, it does not need to be placed.

For Pure MPI Codes Using HPE MPT

WARNING: mbind.x disables MPI_DSM_DISTRIBUTE and overwrites the placement initially
performed by MPT's mpiexec. The placement output from MPI_DSM_VERBOSE (if set) most likely
is incorrect and should be ignored.
Sample PBS script where the same number of MPI ranks are used in different nodes:

#PBS -l select=2:ncpus=28:mpiprocs=4:model=bro

module load comp-intel
module load mpi-hpe

#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -v ./a.out
#or simply:

Using the mbind Tool for Pinning 62

#mpiexec mbind.x -v ./a.out

On each of the two nodes, four MPI processes are spread among four physical cores (CPUs
0,1,14,15); two on each socket, as shown in the application's stdout:

host: r601i0n3, ncpus: 56, process-rank: 0 (r0), bound to cpu: 0
host: r601i0n3, ncpus: 56, process-rank: 1 (r1), bound to cpu: 1
host: r601i0n3, ncpus: 56, process-rank: 2 (r2), bound to cpu: 14
host: r601i0n3, ncpus: 56, process-rank: 3 (r3), bound to cpu: 15
host: r601i0n4, ncpus: 56, process-rank: 4 (r0), bound to cpu: 0
host: r601i0n4, ncpus: 56, process-rank: 5 (r1), bound to cpu: 1
host: r601i0n4, ncpus: 56, process-rank: 6 (r2), bound to cpu: 14
host: r601i0n4, ncpus: 56, process-rank: 7 (r3), bound to cpu: 15

Note: For readability in this article, the printout of the binding information from mbind.x is sorted
by the process-rank. An actual printout will not be sorted.

Sample PBS script where different numbers of MPI ranks are used on different nodes:

#PBS -l select=1:ncpus=28:mpiprocs=1:model=bro+2:ncpus=28:mpiprocs=4:model=bro

module load comp-intel
module load mpi-hpe

#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

mpiexec -np 9 mbind.x -cs -v ./a.out
#Or simply:
#mpiexec mbind.x -v ./a.out

As shown in the application's stdout, only one MPI process is used on the first node and it is
pinned to CPU 0 on that node. For each of the other two nodes, four MPI processes are spread
among four physical cores (CPUs 0,1,14,15):

host: r601i0n3, ncpus: 56, process-rank: 0 (r0), bound to cpu: 0
host: r601i0n4, ncpus: 56, process-rank: 1 (r0), bound to cpu: 0
host: r601i0n4, ncpus: 56, process-rank: 2 (r1), bound to cpu: 1
host: r601i0n4, ncpus: 56, process-rank: 3 (r2), bound to cpu: 14
host: r601i0n4, ncpus: 56, process-rank: 4 (r3), bound to cpu: 15
host: r601i0n12, ncpus: 56, process-rank: 5 (r0), bound to cpu: 0
host: r601i0n12, ncpus: 56, process-rank: 6 (r1), bound to cpu: 1
host: r601i0n12, ncpus: 56, process-rank: 7 (r2), bound to cpu: 14
host: r601i0n12, ncpus: 56, process-rank: 8 (r3), bound to cpu: 15

For MPI+OpenMP Hybrid Codes Using HPE MPT and Intel OpenMP

Sample PBS script:

#PBS -l select=2:ncpus=28:mpiprocs=4:model=bro

module load comp-intel
module load mpi-hpe

setenv OMP_NUM_THREADS 2
#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -t2 -v ./a.out
#or simply:
#mpiexec mbind.x -v ./a.out

On each of the two nodes, the four MPI processes are spread among the physical cores. The two
OpenMP threads of each MPI process run on adjacent physical cores, as shown in the
application's stdout:

Using the mbind Tool for Pinning 63

host: r623i5n2, ncpus: 56, process-rank: 0 (r0), nthreads: 2, bound to cpus: {0,1}
host: r623i5n2, ncpus: 56, process-rank: 1 (r1), nthreads: 2, bound to cpus: {2,3}
host: r623i5n2, ncpus: 56, process-rank: 2 (r2), nthreads: 2, bound to cpus: {14,15}
host: r623i5n2, ncpus: 56, process-rank: 3 (r3), nthreads: 2, bound to cpus: {16,17}
host: r623i6n9, ncpus: 56, process-rank: 4 (r0), nthreads: 2, bound to cpus: {0,1}
host: r623i6n9, ncpus: 56, process-rank: 5 (r1), nthreads: 2, bound to cpus: {2,3}
host: r623i6n9, ncpus: 56, process-rank: 6 (r2), nthreads: 2, bound to cpus: {14,15}
host: r623i6n9, ncpus: 56, process-rank: 7 (r3), nthreads: 2, bound to cpus: {16,17}

You can confirm this by running the following ps command line on the running nodes. Note that
the HPE MPT library creates a shepherd process (shown running on PSR=18 in the output below),
which does not do any work.

r623i5n2% ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 18 a.out 00:00:00 41087 41079 41087
 0 a.out 00:00:12 41092 41087 41092
 1 a.out 00:00:12 41092 41087 41099
 2 a.out 00:00:12 41093 41087 41093
 3 a.out 00:00:12 41093 41087 41098
 14 a.out 00:00:12 41094 41087 41094
 15 a.out 00:00:12 41094 41087 41097
 16 a.out 00:00:12 41095 41087 41095
 17 a.out 00:00:12 41095 41087 41096

For Pure MPI or MPI+OpenMP Hybrid Codes Using other MPI Libraries
and Intel OpenMP

Usage of mbind with MPI libraries such as HPC-X or Intel-MPI should be the same as with HPE
MPT. The main difference is that you must load the proper mpi modulefile, as follows:

For HPC-X:

module load mpi-hpcx

•

For Intel-MPI:

module use /nasa/modulefiles/testing
module load mpi-intel

Note that the Intel MPI library automatically pins processes to CPUs to prevent unwanted
process migration. If you find that the placement done by the Intel MPI library is not
optimal, you can use mbind to do the pinning instead. If you use version 4.0.2.003 or
earlier, you might need to set the environment variable I_MPI_PIN to 0 in order for mbind.x
to work properly.

•

The mbind utility was created by NAS staff member Henry Jin.

Using the mbind Tool for Pinning 64

	Table of Contents
	Code Development
	Debugging
	Recommended Intel Compiler Debugging Options
	Common Causes of Segmentation Faults (Segfaults)
	TotalView
	GNU Debugger (GDB)
	Finding Hotspots in Your Code with the Intel VTune Command-Line Interface
	Using Gprof for Performance Analysis

	Performance Analysis
	Getting a Quick Performance Overview with Intel APS
	Using Intel Advisor for Better Threading and Vectorization
	Running a Roofline Analysis with Intel Advisor
	Using MPIProf for Performance Analysis
	Using MPInside for Performance Analysis and Diagnosis
	Using the IOT Toolkit for I/O and MPI Performance Analysis
	Overview of Intel VTune Analysis
	Finding Hotspots in Your Code with the Intel VTune Command-Line Interface

	Process/Thread Pinning
	Instrumenting Your Fortran Code to Check Process/Thread Placement
	Using HPE MPT Environment Variables for Pinning
	Using the omplace Tool for Pinning
	Using Intel OpenMP Thread Affinity for Pinning
	Process/Thread Pinning Overview
	Using the dplace Tool for Pinning
	Using the mbind Tool for Pinning

